Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.1Z: Simple Path Loss Model

From LNTwww
Revision as of 16:48, 25 March 2020 by Javier (talk | contribs)

Bandbreitenorganisation bei DSL

Radio transmission with line-of-sight can be described by the so-called path loss model, which is given by the following equations: VP(d)=V0+γ10dBlg(d/d0), V0=γ10dBlg4πd0λ.

The graphic shows the path loss  VP(d)  in  dB. The abscissa  d  is also displayed logarithmically.

In the above equation, the following parameters are used:

  • the distance  d  of transmitter and receiver,
  • the reference distance  d0=1 m,
  • the path loss exponent  γ,
  • the wavelength  λ  of the electromagnetic wave.


Two scenarios are shown  (A)  and  (B)  with the same path loss at distance  d0=1 m: V0=VP(d=d0)=20dB.

One of these two scenarios describes the so-called free space attenuation, characterized by the path loss exponent  γ=2. However, the equation for the free space attenuation only applies in the far-field, i.e. when the distance  d  between transmitter and receiver is greater than the Fraunhofer distance; dF=2D2/λ.

Here,  D  is the largest physical dimension of the transmitting antenna. With an  λ/2–antenna, the Fraunhofer distance has a simple expression: dF=2(λ/2)2λ=λ/2.




Notes:



Questionnaire

1

Which path loss exponents apply to the scenarios  (A)  and  (B)?

γA = 

γB = 

2

Which scenario describes the free space attenuation?

scenario  (A),
Scenario  (B).

3

Which signal frequencies are the basis for the scenarios  (A)  and  (B) ?

fA = 

  MHz
fB = 

  MHz
Does the free space&ndash scenario apply to all distances between  1  m  and  10 km?
|type="()"}
+ Yes,
- No.


Sample solution

'(1)  The (simplest) path loss equation is VP(d)=V0+γ10dBlg(d/d0).

  • In scenario (A), the waste per decade (for example, between d0=1 m and d=10 m) is exactly 20 dB and in scenario (B) 25 dB.
  • It follows:

γA=2_,γB=2.5_.


(2)  Correct is solution 1, since the free space attenuation is characterized by the path loss exponent γ=2.


(3)  The path loss at d0=1 m is in both cases V0=20 dB. For scenario (A) the same applies: 10lg[4πd0λA]2=20dB4πd0λA=10λA=4π0.1m=1,257m.

  • The frequency fA is related to the wavelength λA over the speed of light c:

f_{\rm A} = \frac{c}{\lambda_{\rm A}} = \frac{3 \cdot 10^8\,{\rm m/s}}}{1.257\,{\rm m}} = 2.39 \cdot 10^8\,{\rm Hz}  \hspace{0.15cm} \underline{\approx 240 \,\,{\rm MHz}}   \hspace{0.05cm}.

  • On the other hand, the scenario (B)

10lg[4πd0λB]2.5=20dB25lg[4πd0λB]=20dB \Rightarrow \hspace{0.3cm}  \frac{4 \cdot \pi \cdot d_0}{\lambda_{\rm B}} = 10^{0.8} \approx 6.31   \hspace {0.3cm} \Rightarrow \hspace{0.3cm}  {\lambda_{\rm B}} = \frac{10}{6.31} \cdot {\lambda_{\rm A}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}  {f_{\rm B}}} = \frac{6.31}{10} \cdot {f_{\rm A}}} = 0.631 \cdot 240 \,{\rm MHz}\hspace{0.15cm} \underline {\approx 151.4 \,\,{\rm MHz}}   \hspace{0.05cm}.


(4)  first suggested solution is correct:

  • In free space–scenario (A) the Fraunhofer–distance  dF=λA/263 cm. Thus, the following always applies  d>dF.
  • Also in scenario (B) is because of  λB2 m  or  dF1 m  the entire displayed course correct.