Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.2Z: Lognormal Fading Revisited

From LNTwww
Revision as of 17:25, 25 March 2020 by Javier (talk | contribs)

Path loss model
with lognormal fading

We assume similar conditions as in   Task 1. 2  but now we summarize the purely distance-dependent path loss  V0  and the mean value  mS  of the lognormal–fading (the index „S” stands for Shadowing): V1=V0+mS.

The total path loss is then given by the equation VP=V1+V2(t)

where  V2(t)  describes a lognormal–distribution  with mean value zero: fV2(V2)=12πσSexp[V222σ2S].

The path loss model shown in the graphic is suitable for the scenario described here:

  • Multiply the transmitted signal  s(t)  first with a constant factor  k1  and further with a stochastic quantity  z2(t)  with the probability density function (PDF)  fz2(z2), then the signal  r(t) results at the output, whose power  PE(t)  is of course also time-dependent due to the stochastic component.
  • The PDF of the lognormally distributed random variable  z2  is for  z20:

fz2(z2)=exp[ln2(z2)/(2C2σ2S)]2πCσSz2withC=ln(10)20dB.

  • For  z20  this PDF is equal to zero.




Notes:

V1=60dB,σS=6dB.

  • The probability that a mean-free Gaussian random variable  z  is greater than its standard deviation  σ, is

Pr(z>σ)=Pr(z<σ)=Q(1)0.158.

  • Also,   Pr(z>2σ)=Pr(z<2σ)=Q(2)0.023.
  • Again for clarification:   z2  is the linear fading–size, while capital letters  V2  denote logarithmic units.
  • The following conversions apply:

z_2 = 10^{-V_{\rm 2}/20\,{\rm dB}}\hspace{0.05cm}, \hspace{0.2cm} V_{\rm 2} = -20\,{\rm dB} \cdot {\rm lg}\hspace{0.15cm}z_2\hspace{0.05cm}.$ ==='"`UNIQ--h-0--QINU`"'Questionnaire=== '"`UNIQ--quiz-00000002-QINU`"' ==='"`UNIQ--h-1--QINU`"'Sample solution=== '"`UNIQ--html-00000003-QINU`"' '''(1)'''  The constant $k_1$ generates the time-independent path loss $V_1 = 60 \ \rm dB$. From this follows: k_{\rm 1} = 10^{-V_{\rm 1}/(20\hspace{0.05cm} {\rm dB})} \hspace{0.15cm} \underline{= 0.001}\hspace{0.05cm}. '''(2)'''  Correct is only the <u>second solution suggestion</u>: *For the Gaussian random variable $V_2$ all values between $–∞$ and $+∞$ are (theoretically) possible. *The transformation $z_2 = 10^{{\it –V_2}\rm /20}$ results in only positive values for the linear random variable $z_2$, namely between 0 (if $V_2$ is positive and reaches to infinity) and $+∞$ (very large negative values of $V_2$). '''(3)''  The random value $z_2$ can only be positive. Therefore the WDF–value $f_{\rm z2}(z_2 = 0)\hspace{0.15cm} is \underline{ = 0}$. *Der WDF–Wert für den Abszissenwert $z_2 = 1$ erhält man durch Einsetzen in die gegebene Gleichung: :f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {{\rm exp } \left [ - {\rm ln}^2 (z_2 = 1) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}=\frac {1}{ \sqrt{2 \pi } \cdot \sigma_{\rm S} } \cdot \frac {1}{ C } =

\frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} }  \cdot \frac {20\,\,{\rm dB}}{  {\rm ln} \hspace{0.1cm}(10)  }  
\hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.

*Der erste Anteil ist gleich dem WDF–Wert $f_{{\it V}2}(V_2 = 0)$.
*$C$ berücksichtigt den Betrag der Ableitung der nichtlinearen Kennlinie $z_2 = g(V_2)$ für $V_2 = 0 \ \rm dB$ bzw. $z_2 = 1$. 
*Schließlich erhält man für $z_2 = 2$:
:f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot 
{\rm exp } \left [ - \frac {{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= \frac {0.578}{ 2} \cdot 
{\rm exp } \left [ - \frac {0.48}{0.952} \right ] \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. 


'''(4)'''  Berücksichtigt man den Zusammenhang zwischen $z_2$ und $V_2$, so erhält man:
:{\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5}
\hspace{0.05cm},
:{\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842}
\hspace{0.05cm},
:{\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) =  {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S})
\hspace{0.05cm}.

*Die Wahrscheinlichkeit, dass eine Gaußvariable größer ist als $2 \cdot \sigma$, ist aber gleich ${\rm Q}(2)$:
:{\rm Pr}(z_{\rm 2} > 4)  =  {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023}
\hspace{0.05cm}.


'''(5)'''  Richtig ist der <u>Lösungsvorschlag 3</u>:
*Die erste Aussage ist mit Sicherheit nicht zutreffend, da sich der Mittelwert $m_{\rm S}$ auf die logarithmierte Empfangsleistung (in $\rm dBm$) bezieht. 
*Um zu klären, ob nun die zweite oder die dritte Lösungsalternative zutrifft, gehen wir von $P_{\rm S} = 1 \ \rm W$, $V_1 = 60 \ \rm dB$  ⇒  $P_{\rm E}' = 1 \ {\rm µ W}$ und folgender $V_2$–WDF aus:
:f_{V{\rm 2}}(V_{\rm 2}) =  0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB})
+ 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.

*In der Hälfte der Zeit ist dann $P_{\rm E} = 1 \ \rm µ W$, während in den beiden anderen Vierteln jeweils gilt:
:V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm}  P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\rm µ W}\hspace{0.05cm},
:V_{\rm 2}= -10\,\,{\rm dB}\text{:} \hspace{0.3cm}  P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\rm µ W}\hspace{0.05cm}.

*Der Mittelwert ergibt somit:
:{\rm E}[P_{\rm E}(t)] =  0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W}
\hspace{0.05cm}.

*Diese einfache Rechnung mit diskreten Wahrscheinlichkeiten anstelle einer kontinuierlichen WDF deutet darauf hin, dass der <u>Lösungsvorschlag 3</u> richtig sein wird.

*The WDF–value for the abscissa value $z_2 = 1$ is obtained by inserting it into the given equation:
f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac {\rm exp } \left [ - {\rm ln}^2 (z_2 = 1) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}=\frac {1}{ \sqrt{2 \pi } \cdot \sigma_{\rm S} }  \cdot \frac {1}{C } =
\frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} }  \cdot \frac {20\,\,{\rm dB}}}{ {\rm ln} \hspace{0.1cm}(10) }  
\hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.$$

*The first portion is equal to the WDF–value $f_{{{\it V}2}(V_2 = 0).
*C considers the amount of the derivative of the non-linear characteristic z_2 = g(V_2) for V_2 = 0 \ \rm dB or z_2 = 1. 
*Finally, for z_2 = 2:
$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  \frac {f_{z{\rm 2}}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot 
{\rm exp } \left [ - \frac {{{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= \frac {0.578}{ 2} \cdot 
{\rm exp } \left [ - \frac {0.48}{0.952} \right ] \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. 


'''(4)'''  If you take into account the relationship between $z_2$ and $V_2$, you get
{\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5}
\hspace{0.05cm},
{\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842}
\hspace{0.05cm},
{\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S})
\hspace{0.05cm}.

*The probability that a Gaussian variable is greater than $2 \cdot \sigma$, but equals ${\rm Q}(2)$:
{\rm Pr}(z_{\rm 2} > 4) = {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023}
\hspace{0.05cm}.


'''(5)'''  Correct is the <u>solution 3</u>:
*The first statement is certainly not correct, since the mean value $m_{\rm S}$ refers to the logarithmic received power (in $\rm dBm$). 
*To clarify whether the second or the third solution alternative is correct, we assume $P_{\rm S} = 1 \ \ \rm W$, $V_1 = 60 \ \ \rm dB$  ⇒  $P_{\rm E}' = 1 \ {\rm µ W}$ and the following $V_2$–WDF
f_{V{\rm 2}}(V_{\rm 2}) = 0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB})
+ 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.

*Halfway through the time, P_{\rm E} = 1 \ \ \rm µ W$, while in the other two quarters, each is valid:

V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\,}{\rm µ W}\hspace{0.05cm}, V_{\rm 2}= -10\,\,{\,}{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\,}{\rm µ W}\hspace{0.05cm}.

  • The mean value thus gives:

{\rm E}[P_{\rm E}(t)] = 0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+ 0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W} \hspace{0.05cm}.

  • This simple calculation with discrete probabilities instead of a continuous WDF indicates that the solution 3 will be correct.