Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.3: Pointer Diagram Representation

From LNTwww
Revision as of 22:13, 4 February 2021 by Noah (talk | contribs)

Zeigerdiagramm einer Harmonischen

We consider an analytical signal  x+(t), which is defined by the drawn diagram in the complex plane. Depending on the choice of signal parameters, this results in three physical bandpass signals  x1(t)x2(t)  and  x3(t), which differ by different starting points  Si=xi(t=0)  unterscheiden (blue, green and red point). In addition, the angular velocities of the three constellations are also different:

  • The analytical signal  x1+(t)  starts at  S1=3 V. The angular velocity is  ω1=π104 1/s.
  • The signal  x2+(t)  starts at the green starting point  S2=j3 V  and, compared to  x1+(t) , rotates with twice the angular velocity  ⇒   ω2=2ω1.
  • The signal x3+(t) starts at the red marked starting point  S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}  and rotates with the same speed as the signal  x_{2+}(t).





Hints:


Questions

1

What are the amplitudes of all signals considered??

A\ = \

 \text{V}

2

What are the frequency and phase values of the signal  x_1(t)?

f_1\ = \

 \text{kHz}
\varphi_1\ = \

 \text{deg}

3

What are the frequency and phase values of the signal  x_2(t)?

f_2\ = \

 \text{kHz}
\varphi_2\ = \

 \text{deg}

4

What are the values of the frequency and phase of the signal   x_3(t)?

f_3\ = \

 \text{kHz}
\varphi_3\ = \

 \text{deg}

5

After what time  t_1  is the analytical signal  x_{3+}(t)  equal to the initial value  x_{3+}(t = 0)for the first time again?

t_1\ = \

 \text{ms}

6

After what time  t_2  is the physical signal  x_3(t)  for the first time again as large as at time  t = 0?

t_2\ = \

 \text{ms}


Solution

(1)  The amplitude of the harmonic oscillation is equal to the pointer length. For all signals  A \; \underline{= 3 \ \text{V}}.


(2)  The sought frequency is given by  f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}.

  • The phase can be determined from  S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}  and is  \varphi_1 \; \underline{= 0}.
  • In total this gives
x_1(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 5 \hspace{0.05cm} kHz}\cdot t) .


(3)  Because of  \omega_2 = 2\cdot \omega_1 , the frequency is now  f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}.

  • The phase is obtained with the starting time  S_2  at  \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j}   ⇒   \varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}.
  • Thus the time function is:
x_2(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t + 90^\circ) = -3\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).

This signal is "minus-sine", which can also be read directly from the pointer diagram:

  • The real part of  x_{2+}(t)  at time  t = 0  is zero. Since the pointer turns counterclockwise, the real part is negative at first.
  • After a quarter turn,  x_2(T/4) = - 3 \ \text{V}.
  • If one continues to turn counterclockwise in steps of  90^\circ  , the signal values  0 \ \text{V}3 \ \text{V}  and  0 \ \text{V} result.


(4)  This sub-task can be solved analogously to questions  (2)  and (3) :  

f_3 \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.


(5)  The pointer requires exactly the period  T_3 = 1/f_3 \; \underline{= 0.1 \ \text{ms}} \;(= t_1) for one revolution..


(6)  The analytical signal starts at  S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}.

  • If the signal rotates further by  120^\circ , exactly the same real part results.
  • The following relationship then applies with  t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}}  :
x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 60^\circ) = 1.5\hspace{0.05cm}{\rm V} .