Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.3Z: Hilbert Transformator

From LNTwww
Revision as of 22:11, 5 February 2021 by Noah (talk | contribs)

Hilbert transformer

The diagram describes a model of how, at least mentally

  • from the real bandpass signal  x(t)
  • the analytical signal  x+(t)


can be generated.

The lower branch contains the so-called „Hilbert transformer” with the frequency response  HHT(f). Its output signal  y(t)  is multiplied by the imaginary unit  j  and added to the signal  x(t) :

x+(t)=x(t)+jy(t).

As test signals are used, each with  A=1V  and  f0=10kHz:

x1(t)=Acos(2πf0t),
x2(t)=Asin(2πf0t),
x_3(t) = A \cdot {\cos} \big( 2 \pi f_0 (t - \tau) \big) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\tau = 12.5 \hspace{0.1cm}{\rm µ s}.





Hints:

  • The following applies to the spectral function of the analytical signal:
X_{\rm +}(f)= \big[1 + {\rm sign}(f)\big] \cdot X(f).


Questions

1

Calculate the frequency response  H_{HT}(f)  of the Hilbert transformer. Which value is valid for the frequency  f_0 = 10 \text{ kHz}?

\text{Re}[H_{\rm HT}(f = f_0)]\ = \

\text{Im}[H_{\rm HT}(f = f_0)]\ = \

2

What is the Hilbert transform  y_1(t)  for the input signal  x_1(t)? In particular, what value results at  t = 0?

y_1(t = 0)\ = \

 \rm V

3

What is the Hilbert transform  y_2(t)  for the input signal  x_2(t)? Which value results in particular at  t = 0?

y_2(t = 0)\ = \

 \rm V

4

What is the Hilbert transform  y_3(t)  for the input signal  x_3(t)? What value results for  t=0?
What is the phase delay  \varphi_{\rm HT}  of the Hilbert transformer?

\varphi_{\rm HT}\ = \

 \text{Grad}
y_3(t = 0)\ = \

 \text{V}

5

What is the analytical signal associated with  x_3(t)  gehörige analytische Signal? What are the values of the real and imaginary parts of this complex signal at time  t = 0?

\text{Re}[x_{3+}(t = 0)]\ = \

 \text{V}
\text{Im}[x_{3+}(t = 0)]\ = \

 \text{V}


Solution

(1)  For the spectral function at the model output holds:

X_{\rm +}(f)= \left(1 + {\rm j}\cdot H_{\rm HT}(f)\right) \cdot X(f).
  • A comparison with the given relation
X_{\rm +}(f)= \left(1 + {\rm sign}(f)\right) \cdot X(f)
shows that  H_{\rm HT}(f) = - {\rm j} \cdot \sign(f)  ist.
  • Thus, the real part we are looking for is  {\rm Re}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=0}  and the imaginary part is equal to  {\rm Im}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=-1}.


(2)  From the spectral function

X_1(f) = {A}/{2}\cdot\delta (f + f_{0})+ {A}/{2}\cdot\delta (f - f_{0}).
becomes according to the Hilbert transformer:
Y_1(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm j}\cdot {A}/{2}\cdot\delta (f - f_{0}).
  • Thus the signal at the output of the Hilbert transformer is:
y_1(t) = A \cdot {\sin} ( 2 \pi f_0 t ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}y_1(t=0)\hspace{0.15 cm}\underline{ =0}.


(3)  Now the spectral functions at the input and output of the Hilbert transformer are:

X_2(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm j}\cdot {A}/{2}\cdot\delta (f - f_{0}),
Y_2(f) = -{A}/{2}\cdot\delta (f + f_{0})- {A}/{2}\cdot\delta (f - f_{0}).
  • It follows that y_2(t) = - A \cdot \cos(2\pi f_0 t) und y_2(t = 0)\; \underline{= -\hspace{-0.08cm}1 \,\text{V}}.



(4)  This input signal can also be represented as follows:

x_3(t) = A \cdot {\cos} ( 2 \pi f_0 t - 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot {\rm 0.0125 \hspace{0.05cm} ms}) = A \cdot {\cos} ( 2 \pi f_0 t - \pi/4)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_3(t) = A \cdot {\cos} ( 2 \pi f_0 t - 3\pi/4).
  • The signal phase is thus  \varphi = \pi /4.
  • The Hilbert transformer delays this by  \varphi_{\rm HT} \; \underline{= 90^\circ} \; (\pi /2)  verzögert.
  • Therefore, the output signal  y_3(t) = A \cdot \cos(2\pi f_0 t -3 \pi /4)  and the signal value at time  t = 0  is  A \cdot \cos(135^\circ) \; \underline{= -0.707 \,\text{V}}.


(5)  The spectral function of the signal  x_3(t)  is:

X_3(f) = {A_0}/{2} \cdot {\rm e}^{{\rm j} \varphi}\cdot\delta (f + f_{\rm 0}) + {A_0}/{2} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f - f_{\rm 0}) .
  • For the analytical signal, the first component disappears and the component at  +f_0  is doubled:
X_{3+}(f) = {A_0} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f - f_{\rm 0}) .
  • By applying the  Verschiebungssatzes , the associated time function with  \varphi = \pi /4 is thus::
x_{3+}(t) = A_0 \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.
  • Specifically, for time  t = 0:
x_{3+}(t = 0) = A_0 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \varphi} = A_0 \cdot{\cos} ( 45^\circ)-{\rm j}\cdot A_0 \cdot{\sin} ( 45^\circ)= \hspace{0.15 cm}\underline{{\rm 0.707 \hspace{0.05cm} V}-{\rm j}\cdot {\rm 0.707 \hspace{0.05cm} V}}.

Hint:  

  • To get from  x(t)  to  x_+(t)  , just replace the cosine function with the complex exponential function.
  • For example, the following applies to a harmonic oscillation:
x(t) = A \cdot {\cos} ( 2 \pi f_0 t -\hspace{0.05cm} \varphi) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{+}(t) = A \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.