Exercise 4.3Z: Hilbert Transformator
From LNTwww
The diagram describes a model of how, at least mentally
- from the real bandpass signal x(t)
- the analytical signal x+(t)
can be generated.
The lower branch contains the so-called „Hilbert transformer” with the frequency response HHT(f). Its output signal y(t) is multiplied by the imaginary unit j and added to the signal x(t) :
- x+(t)=x(t)+j⋅y(t).
As test signals are used, each with A=1V and f0=10kHz:
- x1(t)=A⋅cos(2πf0t),
- x2(t)=A⋅sin(2πf0t),
- x_3(t) = A \cdot {\cos} \big( 2 \pi f_0 (t - \tau) \big) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\tau = 12.5 \hspace{0.1cm}{\rm µ s}.
Hints:
- This exercise belongs to the task Analytical Signal and Its Spectral Function.
- The following applies to the spectral function of the analytical signal:
- X_{\rm +}(f)= \big[1 + {\rm sign}(f)\big] \cdot X(f).
Questions
Solution
(1) For the spectral function at the model output holds:
- X_{\rm +}(f)= \left(1 + {\rm j}\cdot H_{\rm HT}(f)\right) \cdot X(f).
- A comparison with the given relation
- X_{\rm +}(f)= \left(1 + {\rm sign}(f)\right) \cdot X(f)
- shows that H_{\rm HT}(f) = - {\rm j} \cdot \sign(f) ist.
- Thus, the real part we are looking for is {\rm Re}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=0} and the imaginary part is equal to {\rm Im}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=-1}.
(2) From the spectral function
- X_1(f) = {A}/{2}\cdot\delta (f + f_{0})+ {A}/{2}\cdot\delta (f - f_{0}).
- becomes according to the Hilbert transformer:
- Y_1(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm j}\cdot {A}/{2}\cdot\delta (f - f_{0}).
- Thus the signal at the output of the Hilbert transformer is:
- y_1(t) = A \cdot {\sin} ( 2 \pi f_0 t ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}y_1(t=0)\hspace{0.15 cm}\underline{ =0}.
(3) Now the spectral functions at the input and output of the Hilbert transformer are:
- X_2(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm j}\cdot {A}/{2}\cdot\delta (f - f_{0}),
- Y_2(f) = -{A}/{2}\cdot\delta (f + f_{0})- {A}/{2}\cdot\delta (f - f_{0}).
- It follows that y_2(t) = - A \cdot \cos(2\pi f_0 t) und y_2(t = 0)\; \underline{= -\hspace{-0.08cm}1 \,\text{V}}.
(4) This input signal can also be represented as follows:
- x_3(t) = A \cdot {\cos} ( 2 \pi f_0 t - 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot {\rm 0.0125 \hspace{0.05cm} ms}) = A \cdot {\cos} ( 2 \pi f_0 t - \pi/4)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_3(t) = A \cdot {\cos} ( 2 \pi f_0 t - 3\pi/4).
- The signal phase is thus \varphi = \pi /4.
- The Hilbert transformer delays this by \varphi_{\rm HT} \; \underline{= 90^\circ} \; (\pi /2) verzögert.
- Therefore, the output signal y_3(t) = A \cdot \cos(2\pi f_0 t -3 \pi /4) and the signal value at time t = 0 is A \cdot \cos(135^\circ) \; \underline{= -0.707 \,\text{V}}.
(5) The spectral function of the signal x_3(t) is:
- X_3(f) = {A_0}/{2} \cdot {\rm e}^{{\rm j} \varphi}\cdot\delta (f + f_{\rm 0}) + {A_0}/{2} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f - f_{\rm 0}) .
- For the analytical signal, the first component disappears and the component at +f_0 is doubled:
- X_{3+}(f) = {A_0} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f - f_{\rm 0}) .
- By applying the Verschiebungssatzes , the associated time function with \varphi = \pi /4 is thus::
- x_{3+}(t) = A_0 \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.
- Specifically, for time t = 0:
- x_{3+}(t = 0) = A_0 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \varphi} = A_0 \cdot{\cos} ( 45^\circ)-{\rm j}\cdot A_0 \cdot{\sin} ( 45^\circ)= \hspace{0.15 cm}\underline{{\rm 0.707 \hspace{0.05cm} V}-{\rm j}\cdot {\rm 0.707 \hspace{0.05cm} V}}.
Hint:
- To get from x(t) to x_+(t) , just replace the cosine function with the complex exponential function.
- For example, the following applies to a harmonic oscillation:
- x(t) = A \cdot {\cos} ( 2 \pi f_0 t -\hspace{0.05cm} \varphi) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{+}(t) = A \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.