Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.5Z: Simple Phase Modulator

From LNTwww
Revision as of 16:59, 10 February 2021 by Noah (talk | contribs)

Modell des betrachteten Phasenmodulators

The diagram shows a quite simple arrangement for approximating a phase modulator. All signals are dimensionless quantities.

The sinusoidal message signal  q(t)  of frequency  fN=10 kHz  is multiplied by the signal  m(t) , which results from the cosinusoidal carrier signal  z(t)  by phase shifting by  ϕ=90 :

m(t)=cos(ωTt+90).

Then the signal  z(t)  with the frequency  fT=1 MHz  is still added directly.

For abbreviation purposes, this task also uses:

  • the difference frequency  fΔ=fTfN=0.99 MHz,
  • the sum frequency  fΣ=fT+fN=1.01 MHz,
  • the two angular frequencies  ωΔ=2πfΔ  and  ωΣ=2πfΣ.




Hints:

  • Consider the trigonomic transformations
sin(α)cos(β)=1/2sin(αβ)+1/2sin(α+β),
sin(α)sin(β)=1/2cos(αβ)1/2cos(α+β).


Questions

1

Which of the following equations correctly describe  s(t) ?

s(t)=cos(ωTt)q(t)sin(ωTt).
s(t)=cos(ωTt)+q(t)cos(ωTt).
s(t)=cos(ωTt)+0.5sin(ωΔt)+0.5sin(ωΣt).
s(t)=cos(ωTt)0.5cos(ωΔt)+0.5cos(ωΣt).

2

Calculate the equivalent low pass signal  sTP(t). What are the inphase and quadrature components at time  t=0?

sI(t=0) = 

sQ(t=0) = 

3

Which of the following statements are true for the locus curve  sTP(t) zu?

The locus curve is a circular arc.
The locus curve is a horizontal straight line.
The locus curve is a vertical straight line.

4

Calculate the magnitude  a(t), in particular its maximum and minimum values.

amax = 

amin = 


Solution

(1)  The first and last suggestions are correct:

  • Due to the phase shift by  ϕ=90  the cosine function becomes the minus-sine function.
  • With  q(t)=sin(ωNt)  holds:
s(t)=cos(ωTt)sin(ωTt)sin(ωNt)=cos(ωTt)0.5cos((ωTωN)t)+0.5cos((ωT+ωN)t).


(2)  The spectrum of the analytical signal is:

S+(f)=δ(ffT)0.5δ(ffΔ)+0.5δ(ffΣ).
  • By shitfing  fT  one arrives at the spectrum of the equivalent low pass signal:
STP(f)=δ(f)0.5δ(f+fN)+0.5δ(ffN).
  • This leads to the time function
sTP(t)=10.5ejωNt+0.5ejωNt=1+jsin(ωNt).
  • At time  t=0 ist sTP(t)=1, is real. Thus:
  • sI(t=0)=Re[sTP(t=0)]=1_,
  • sQ(t=0)=Ime[sTP(t=0)]=0_.


Locus curve of a simple phase modulator

(3)  The locus curve is a vertical straight line   ⇒   Proposition 3 with the following values:

s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} µ s}) = \text{ ...} = 1,
s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} µ s}) = s_{\rm TP}(t = {\rm 125 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 + {\rm j},
s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} µ s}) = s_{\rm TP}(t = {\rm 175 \hspace{0.05cm} \mu s}) = \text{ ...} = 1 - {\rm j}.


(4)  The magnitude (the pointer length) varies between   a_{\rm max} = \sqrt{2}\; \underline{\approx 1.414}  and  a_{\rm min} \;\underline{= 1}. It holds:

a(t) = \sqrt{1 + \sin^2(\omega_{\rm N} \hspace{0.05cm} t )}.

With ideal phase modulation, on the other hand, the envelope  a(t)  would have to be constant.


(5)  The real part is always  1, the imaginary part equal to  \sin(\omega_{\rm N} \cdot t) . From this follows the phase function:

\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N} \hspace{0.05cm} t )\right)}.
  • The maximum value of the sine function is  1. From this follows:
\phi_{\rm max} = \arctan (1) \; \underline{= \pi /4 } \; \Rightarrow \; \underline{45^\circ}.