Exercise 2.4: Rectified Cosine
A cosine signal x(t) with the amplitude 1V and the frequency f0=10kHz is applied to the input of a half-wave rectifier. At its output, the signal y(t) results, which is shown in the graph below.
In subtasks (6) und (7) the error signal ε3(t)=y3(t)−y(t) is also used. This describes the difference between the Fourier series ⇒ y3(t) limited to only N=3 coefficients and the actual output signal y(t).
Hints:
- This exercise belongs to the chapter Fourier Series.
- To solve the problem, you can use the following definite integral (let n be an integer):
- ∫π/2−π/2cos(u)⋅cos(2nu)du=(−1)n+1⋅24n2−1.
- You can find a compact summary of the topic in the learning video Zur Berechnung der Fourierkoeffizienten.
Questions
Solution
- From the signal frequency f_0= 10\,\rm{kHz} follows T_0 = 1/f_0 = 100\,µ\text{s}.
- The cosine signal is free of equal signals (A_0 = 0) and is completely described by a single cosine coefficient – namely A_1 .
- All sine coefficients are B_n \equiv 0, since x(t) is an even function.
- The Fourier series representation x_3(t) reproduces x(t) without error.
(2) Due to the double path rectification, the period duration is now half the value: T_0 \hspace{0.1cm}\underline{= 50\,µ\text{s}}.
- For all subsequent points, the specification T_0 refers to this value, i.e. to the period of the signal y(t).
(3) In the range from –T_0/2 to +T_0/2 \ (–25\,µ\text{s} \ \text{...} +25\,µ\text{s}) ist y(t) = x(t). Mit f_x= 10\,\rm{kHz} = 1/(2T_0) therefore applies to this section:
- y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi \cdot {t}/{T_0}).
- This results in the following for the DC signal component:
- A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\cdot {t}/{T_0})\,{\rm d}t.
- With the substitution u = \pi \cdot t/T_0 one obtains:
- A_0=\left. \frac{ {\rm 1V}}{\pi}\int_{-\pi /2}^{\pi/2}\cos(u)\,{\rm d}u=\frac{ {\rm 1V}}{\pi}\sin(u)\; \right| _{-\pi/2}^{\pi/2}=\frac{ {\rm 1V}\cdot 2}{\pi} \hspace{0.15cm}\underline{\approx 0.637\;{\rm V}}.
(4) Since y(–t) = y(t) holds, all sine coefficients B_n = 0. Thus B_2 \hspace{0.1cm}\underline{= 0} also holds.
(5) For the coefficients A_n applies with the substitution u = \pi \cdot t/T_0 according to the given integral:
- A_n = \frac{2{\rm V}}{T_0}\int_{-T_0/2}^{T_0/2}\cos(\pi\frac{t}{T_0})\cdot \cos(n\cdot 2\pi\frac{t}{T_0})\,{\rm d}t = \frac{2{\rm V}}{\pi}\int_{-\pi/2}^{\pi/2}\cos(u)\cdot \cos(2n u)\,{\rm d}u \quad \Rightarrow \quad A_n = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2 - 1} \right)}}.
The coefficient A_2 is thus equal to -4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \, \text{V}}.
(6) For the finite Fourier series with N = 3 the following applies in general:
- y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].
At time t = 0 y_3(0) \approx 1.0125 \ \rm V; thus the error is \varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 \,\text{V}} .
(7) At time t = 25\,µ\text{s} entspricht der halben Periodendauer des Signals y(t). Hierfür gilt wegen \omega_0 \cdot T_0 = 2\pi:
- y_3(T_0/2) = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]= \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] = \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.
- Da y(T_0/2) = 0 ist, ergibt sich auch \varepsilon_3(T_0/2) \hspace{0.15cm}\underline{\approx 0.091\,{\rm V}}.
- Dieser Fehler ist um mehr als den Faktor 7 größer als der Fehler bei t = 0, da y(t) bei t = T_0/2 mehr hochfrequente Anteile besitzt (spitzförmiger Verlauf).
- Wird gefordert, dass der Fehler \varepsilon_3(T_0/2) kleiner als 0.01 sein soll, dann müssten mindestens 32 Fourierkoeffizienten berücksichtigt werden.