Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.4: Rectified Cosine

From LNTwww
Revision as of 00:16, 14 January 2021 by Noah (talk | contribs)

Gleichgerichteter Cosinus

A cosine signal  x(t)  with the amplitude  1V  and the frequency  f0=10kHz  is applied to the input of a half-wave rectifier. At its output, the signal  y(t) results, which is shown in the graph below.

In subtasks  (6)  und  (7)  the error signal  ε3(t)=y3(t)y(t)  is also used. This describes the difference between the Fourier series  ⇒   y3(t)   limited to only  N=3  coefficients and the actual output signal  y(t).




Hints:

  • To solve the problem, you can use the following definite integral   (let n be an integer):
π/2π/2cos(u)cos(2nu)du=(1)n+124n21.


Questions

1

Which of the following statements are true for the signal  x(t)  zutreffend?

The period duration is  T_0 = 100 \,µ{\rm s}.
The DC signal coefficient is  A_0 = 0.
Of all cosine coefficients  A_n  exactly one is not equal to zero.
Of all the sine coefficients  B_n  exactly one is not equal to zero.
The Fourier series  x_3(t)  does not deviate from the actual signal  x(t) .

2

What is the period duration of the signal  y(t)?

T_0\ = \

  {\rm µs}

3

Calculate the DC component of the signal  y(t).

A_0\ = \

  {\rm V}

4

What are the sine coefficients  B_n? Justify your result. Enter the coefficient  B_2  as a check.

B_2\ = \

  {\rm V}

5

Now calculate the cosine coefficient  A_n. Enter the coefficient  A_2  as a check.

A_2\ = \

  {\rm V}

6

Specify the Fourier series  y_3(t)  analytically (limit to  N = 3  sine and cosine coefficients each).
How large is the error between this finite Fourier series and the actual signal value at  t = 0?

\varepsilon_3(t= 0)\ = \

{\rm V}

7

Now calculate the error  \varepsilon_3(t= 25 \,µ{\rm s}). Interpret this value in comparison to the result from  (6).

\varepsilon_3(t= 25 \,µ{\rm s})\ = \

{\rm V}


Solution

(1)  All solutions are correct except the fourth:

  • From the signal frequency  f_0= 10\,\rm{kHz}  follows  T_0 = 1/f_0 = 100\,µ\text{s}.
  • The cosine signal is free of equal signals  (A_0 = 0)  and is completely described by a single cosine coefficient – namely  A_1 .
  • All sine coefficients are  B_n \equiv 0, since  x(t)  is an even function.
  • The Fourier series representation  x_3(t)  reproduces  x(t)  without error.


(2)  Due to the double path rectification, the period duration is now half the value:  T_0 \hspace{0.1cm}\underline{= 50\,µ\text{s}}.

  • For all subsequent points, the specification  T_0  refers to this value, i.e. to the period of the signal  y(t).


(3)  In the range from  –T_0/2  to  +T_0/2 \ (–25\,µ\text{s} \ \text{...} +25\,µ\text{s})  ist  y(t) = x(t). Mit  f_x= 10\,\rm{kHz} = 1/(2T_0)  therefore applies to this section:

y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi \cdot {t}/{T_0}).
  • This results in the following for the DC signal component:
A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\cdot {t}/{T_0})\,{\rm d}t.
  • With the substitution  u = \pi \cdot t/T_0  one obtains:
A_0=\left. \frac{ {\rm 1V}}{\pi}\int_{-\pi /2}^{\pi/2}\cos(u)\,{\rm d}u=\frac{ {\rm 1V}}{\pi}\sin(u)\; \right| _{-\pi/2}^{\pi/2}=\frac{ {\rm 1V}\cdot 2}{\pi} \hspace{0.15cm}\underline{\approx 0.637\;{\rm V}}.


(4)  Since  y(–t) = y(t)  holds, all sine coefficients  B_n = 0. Thus  B_2 \hspace{0.1cm}\underline{= 0} also holds.


(5)  For the coefficients  A_n  applies with the substitution  u = \pi \cdot t/T_0  according to the given integral:

A_n = \frac{2{\rm V}}{T_0}\int_{-T_0/2}^{T_0/2}\cos(\pi\frac{t}{T_0})\cdot \cos(n\cdot 2\pi\frac{t}{T_0})\,{\rm d}t = \frac{2{\rm V}}{\pi}\int_{-\pi/2}^{\pi/2}\cos(u)\cdot \cos(2n u)\,{\rm d}u \quad \Rightarrow \quad A_n = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2 - 1} \right)}}.

The coefficient  A_2  is thus equal to  -4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \, \text{V}}.


(6)  For the finite Fourier series with  N = 3  the following applies in general:


y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].

At time  t = 0    y_3(0) \approx 1.0125 \ \rm V; thus the error is  \varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 \,\text{V}} .


(7)  At time  t = 25\,µ\text{s}  entspricht der halben Periodendauer des Signals  y(t). Hierfür gilt wegen  \omega_0 \cdot T_0 = 2\pi:

y_3(T_0/2) = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]= \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] = \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.
  • Da  y(T_0/2) = 0  ist, ergibt sich auch  \varepsilon_3(T_0/2) \hspace{0.15cm}\underline{\approx 0.091\,{\rm V}}.
  • Dieser Fehler ist um mehr als den Faktor 7 größer als der Fehler bei  t = 0, da  y(t)  bei  t = T_0/2  mehr hochfrequente Anteile besitzt (spitzförmiger Verlauf).
  • Wird gefordert, dass der Fehler  \varepsilon_3(T_0/2)  kleiner als  0.01  sein soll, dann müssten mindestens  32  Fourierkoeffizienten berücksichtigt werden.