Exercise 1.6Z: Ternary Markov Source

From LNTwww
Revision as of 13:05, 10 August 2021 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Ternary Markov source

The diagram on the right shows a Markov source with  $M = 3$  states  $\rm A$,  $\rm B$  and  $\rm C$.

Let the two parameters of this Markov process be:

$$0 \le p \le 0.5 \hspace{0.05cm},\hspace{0.2cm}0 \le q \le 1 \hspace{0.05cm}.$$

Due to the Markov property of this source, the entropy can be determined in different ways:

  • One calculates the first two entropy approximations  $H_1$  and  $H_2$.  Then the following applies to the actual entropy:
$$H= H_{k \to \infty} = 2 \cdot H_{\rm 2} - H_{\rm 1} \hspace{0.05cm}.$$
  • However, according to the  "direct calculation method", the entropy can also be written as follows  (nine terms in total):
$$H = p_{\rm AA} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + \ \text{...} \hspace{0.05cm}, \ \text{wobei} \ p_{\rm AA} = p_{\rm A} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm},\hspace{0.2cm} p_{\rm AB} = p_{\rm A} \cdot p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm}, \ \text{...}$$




Hint:



Questions

1

For which parameters  $p$  and  $q$  does the maximum entropy per symbol result?

$p \ = \ $

$q\ = \ $

$H_\text{max} \ = \ $

$\ \rm bit/symbol$

2

Let  $p = 1/4$  and  $q = 1$.  What is the value of the first entropy approximation in this case?

$H_1 = \ \ $

$\ \rm bit/symbol$

3

Furthermore, let  $p = 1/4$  and  $q = 1$.  What value results in this case for the second entropy approximation?

$H_2 = \ \ $

$\ \rm bit/symbol$

4

What is the actual source entropy  $H= H_{k \to \infty}$  with  $p = 1/4$  and  $q = 1$?

$H = \ \ $

$\ \rm bit/symbol$

5

What is the actual source entropy  $H= H_{k \to \infty}$  with  $p = 1/2$  and  $q = 0$?

$H = \ \ $

$\ \rm bit/symbol$


Solution

(1)  The maximum entropy results when the symbols  $\rm A$,  $\rm B$  and  $\rm C$  are equally probable and the symbols within the sequence are statistically independent of each other.  Then the following must apply:

Transition diagram for  $p = 1/4$,  $q = 1$
  • $p_{\rm A} = p_{\rm A|A} = p_{\rm A|B} = p_{\rm A|C} = 1/3$,
  • $p_{\rm B} = p_{\rm B|A} = p_{\rm B|B} = p_{\rm B|C} = 1/3$,
  • $p_{\rm C} = p_{\rm C|A} = p_{\rm C|B} = p_{\rm C|C} = 1/3$.


From this, the values we are looking for can be determined:

  • For example, from  $p_{\rm C|C} = 1/3$  one obtains the value  $p \hspace{0.15cm}\underline{= 1/3}$.
  • If one also takes into account the relationship  $p_{\rm A|A} = p \cdot q$,  then  $q \hspace{0.15cm}\underline{= 1}$.
  • This gives the maximum entropy  $H_\text{max} ={\rm log_2} \ 3\hspace{0.15cm}\underline{= 1.585\ \rm bit/symbol}$.


(2)  With the parameter values  $p = 1/4$  and  $q = 1$ , we obtain the adjacent transition diagram, which has the following symmetries:

  • $p_{\rm A|A} = p_{\rm B|B} = p_{\rm C|C} = 1/4$  (marked in red),
  • $p_{\rm A|B} = p_{\rm B|C} = p_{\rm C|A} = 1/2$  (marked in green),
  • $p_{\rm A|C} = p_{\rm B|A} = p_{\rm C|CB} = 1/4$  (marked in blue).


It is obvious that the symbol probabilities are all equal:

$$p_{\rm A} = p_{\rm B} = p_{\rm C} = 1/3 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_1 = {\rm log_2}\hspace{0.1cm} 3 \hspace{0.15cm} \underline {= 1.585 \,{\rm bit/symbol}} \hspace{0.05cm}.$$


(3)  For the second entropy approximation one needs  $3^2 = 9$  joint probabilities.

  • Using the result from  (2) , one obtains for this:
$$p_{\rm AA} = p_{\rm BB}= p_{\rm CC}= p_{\rm AC}=p_{\rm BA}=p_{\rm CB}=1/12 \hspace{0.05cm},\hspace{0.5cm} p_{\rm AB} = p_{\rm BC}=p_{\rm CA}=1/6$$
$$\Rightarrow \hspace{0.2cm} H_2 = \frac{1}{2} \cdot \left [ 6 \cdot \frac{1}{12} \cdot {\rm log_2}\hspace{0.1cm} 12 + 3 \cdot \frac{1}{6} \cdot {\rm log_2}\hspace{0.1cm} 6 \right ] = \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 4 + \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 3 + \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 2 + \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 3 = \frac{3}{4} + \frac{{\rm log_2}\hspace{0.1cm} 3}{2} \hspace{0.15cm} \underline {= 1.5425 \,{\rm bit/symbol}} \hspace{0.05cm}.$$


(4)  Due to the Markov property of the source, the following holds true:

$$H = H_{k \to \infty}= 2 \cdot H_2 - H_1 = \big [ {3}/{2} + {\rm log_2}\hspace{0.1cm} 3 \big ] - {\rm log_2}\hspace{0.1cm} 3\hspace{0.15cm} \underline {= 1.5 \,{\rm bit/symbol}} \hspace{0.05cm}.$$
  • One would arrive at the same result according to the following calculation:
$$H= p_{\rm AA} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + ... \hspace{0.1cm}= 6 \cdot \frac{1}{12} \cdot {\rm log_2}\hspace{0.1cm} 4 + 3 \cdot \frac{1}{16} \cdot {\rm log_2}\hspace{0.1cm} 2 \hspace{0.15cm} \underline {= 1.5 \,{\rm bit/symbol}} \hspace{0.05cm}.$$


Transition diagram for  $p = 1/4$,  $q = 0$

(5)  From the adjacent transition diagram with the current parameters, one can see that in the case of stationarity  $p_{\rm B} = 0$  will apply, since  $\rm B$  can occur at most once at the starting time.

  • So there is a binary Markov chain with the symbols  $\rm A$  and  $\rm C$ .
  • The symbol probabilities are therefore given by:
$$p_{\rm A} = 0.5 \cdot p_{\rm C} \hspace{0.05cm}, \hspace{0.2cm}p_{\rm A} + p_{\rm C} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm A} = 1/3 \hspace{0.05cm}, \hspace{0.2cm} p_{\rm C} = 2/3\hspace{0.05cm}. $$
  • This gives the following probabilities:
$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} = \hspace{0.1cm}0\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AA} = 0 \hspace{0.05cm},$$
$$ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CA} = p_{\rm C} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3 \hspace{0.05cm},\hspace{0.2cm}{\rm log_2}\hspace{0.1cm}(1/p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} )= 1\hspace{0.05cm},$$
$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} =1\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AC} = p_{\rm A} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} = 1/3 \cdot 1 = 1/3 \hspace{0.05cm},\hspace{0.61cm}{\rm log_2}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} )= 0\hspace{0.05cm},$$
$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CC} = p_{\rm C} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3\hspace{0.05cm},\hspace{0.2cm}{\rm log_2}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} )= 1 $$
$$\Rightarrow \hspace{0.25cm} H = p_{\rm AA} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} +p_{\rm CA} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C}}+ p_{\rm AC} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm CC} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C}}= 0 + 1/3 \cdot 1 + 1/3 \cdot 0 + 1/3 \cdot 1 \hspace{0.15cm} \underline {= 0.667 \,{\rm bit/symbol}} \hspace{0.05cm}.$$