Exponentially Distributed Random Variables

From LNTwww

One-sided exponential distribution


$\text{Definition:}$  A continuous random variable  $x$  is called (one-sided)  exponentially distributed if it can take only non–negative values and the PDF for  $x>0$  has the following shape:

$$f_x(x)=\it \lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}.$$


PDF and CDF of an exponentially distributed random variable

The left image shows the  probability density function  (PDF) of such an exponentially distributed random variable  $x$.  Highlight:

  • The larger the distribution parameter  $λ$  is, the steeper the decay occurs.
  • By definition  $f_{x}(0) = λ/2$, i.e. the mean of left-hand limit  $(0)$  and right-hand limit  $(\lambda)$.


For the  cumulative distribution function  (right graph), we obtain for  $r > 0$  by integration over the PDF:

$$F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.$$

The  moments  of the one-sided exponential distribution are generally equal to  

$$m_k = k!/λ^k.$$

From this and from Steiner's theorem, we get for the mean and the dispersion:

$$m_1={1}/{\lambda},$$
$$\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.$$

$\text{Example 1:}$  The exponential distribution has great importance for reliability studies, and the term "lifetime distribution" is also commonly used in this context.

  • In these applications, the random variable is often the time  $t$ that elapses before a component fails.
  • Furthermore, it should be noted that the exponential distribution is closely related to the  Poisson distribution .

Transformation of random variables


To generate such an exponentially distributed random variable on a digital computer, for example, a  nonlinear transformation  The underlying principle is first stated here in general terms.

$\text{Procedure:}$  If a continuous random variable  $u$  possesses the PDF  $f_{u}(u)$, then the probability density function of the random variable transformed at the nonlinear characteristic  $x = g(u)$  $x$ holds:

$$f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.$$

Here  $g\hspace{0.05cm}'(u)$  denotes the derivative of the characteristic curve  $g(u)$  and  $h(x)$  gives the inverse function to  $g(u)$  .


  • The above equation is valid, however, only under the condition that the derivative  $g\hspace{0.03cm}'(u) \ne 0$  .
  • For a characteristic with horizontal sections  $(g\hspace{0.05cm}'(u) = 0)$  additional Dirac functions appear in the PDF if the input quantity has components in the range.
  • The weights of these Dirac functions are equal to the probabilities that the input quantity lies in these domains.


To transform random variables

$\text{Example 2:}$  Given a random variable distributed between  $-2$  and  $+2$  triangularly  $u$  on a nonlinearity with characteristic  $x = g(u)$,

  • which, in the range  $\vert u \vert ≤ 1$  triples the input values,  and
  • mapping all values  $\vert u \vert > 1$  to  $x = \pm 3$  depending on the sign,


then the PDF $f_{x}(x)$ sketched on the right is obtained.


Please note:

(1)   Due to the amplification by a factor of  $3$  $f_{x}(x)$  is wider and lower than $f_{u}(u) by this factor.$

(2)   The two horizontal limits of the characteristic at  $u = ±1$  lead to the two Dirac functions at  $x = ±3$, each with weight  $1/8$.

(3)   The weight  $1/8$  corresponds to the green areas in the PDF $f_{u}(u).$

Erzeugung einer exponentialverteilten Zufallsgröße


$\text{Vorgehensweise:}$  Nun wird vorausgesetzt, dass die zu transformierende Zufallsgröße  $u$  gleichverteilt zwischen  $0$  (inklusive) und  $1$  (exklusive) ist.  Außerdem betrachten wir die monoton steigende Kennlinie

$$x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).$$

Es kann gezeigt werden, dass durch diese Kennlinie  $x=g_1(u)$  eine einseitig exponentialverteilte Zufallsgröße  $x$  mit folgender PDF entsteht 
(Herleitung siehe nächste Seite):

$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm f\ddot{u}r}\hspace{0.2cm} {\it x}>0.$$
  • Für  $x = 0$  ist der PDF-Wert nur halb so groß  $(\lambda/2)$.
  • Negative  $x$-Werte treten nicht auf, da für  $0 ≤ u < 1$  das Argument der (natürlichen) Logarithmus–Funktion nicht kleiner wird als  $1$.


Die gleiche PDF erhält man übrigens mit der monoton fallenden Kennlinie

$$x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$

Bitte beachten Sie:

  • Bei einer Rechnerimplementierung entsprechend der ersten Transformationskennlinie  $x=g_1(u)$  ist der Wert  $u = 1$  auszuschließen.
  • Verwendet man die zweite Transformationskennlinie  $x=g_2(u)$, so muss dagegen der Wert  $u =0$  ausgeschlossen werden.


Das Lernvideo  Erzeugung einer Exponentialverteilung  soll die hier abgeleiteten Transformationen verdeutlichen.

Herleitung der zugehörigen Transformationskennlinie


$\text{Aufgabenstellung:}$  Nun wird die bereits auf der letzten Seite verwendete Transformationskennlinie  $x = g_1(u)= g(u)$  hergeleitet, die aus einer zwischen  $0$  und  $1$  gleichverteilten Zufallsgröße  $u$  mit der Wahrscheinlichkeitsdichtefunktion (PDF)  $f_{u}(u)$  eine einseitig exponentialverteilte Zufallsgröße  $x$  mit der PDF  $f_{x}(x)$  formt:

$$f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm falls\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm falls\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\\ 0 & \rm sonst, \\ \end{array} \right. \hspace{0.5cm}\Rightarrow \hspace{0.5cm} f_{x}(x)= \left\{ \begin{array}{*{2}{c} } \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm falls\hspace{0.3cm} {\it x} > 0,\\ \lambda/2 & \rm falls\hspace{0.3cm} {\it x} = 0 ,\\ 0 & \rm falls\hspace{0.3cm} {\it x} < 0. \\ \end{array} \right.$$


$\text{Problemlösung:}$ 

(1)  Ausgehend von der allgemeinen Transformationsgleichung

$$f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}$$

erhält man durch Umstellen und Einsetzen der vorgegebenen PDF $f_{ x}(x):$

$$\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$

Hierbei gibt  $x = g\hspace{0.05cm}'(u)$  die Ableitung der Kennlinie an, die wir als monoton steigend voraussetzen.

(2)  Mit dieser Annahme erhält man  $\vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u$  und die Differentialgleichung  ${\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x$  mit der Lösung  $u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$

(3)  Aus der Bedingung, dass die Eingangsgröße  $u =0$  zum Ausgangswert  $x =0$  führen soll, erhält man für die Konstante  $K =1$  und damit  $u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$

(4)  Löst man diese Gleichung nach  $x$  auf, so ergibt sich die vorne angegebene Gleichung:

$$x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$
  • Bei einer Rechnerimplementierung ist allerdings sicherzustellen, dass für die gleichverteilte Eingangsgröße  $u$  der kritische Wert  $1$  ausgeschlossen wird. 
  • Dies wirkt sich jedoch auf das Endergebnis (fast) nicht aus.


Two-sided exponential distribution - Laplace distribution


In engem Zusammenhang mit der Exponentialverteilung steht die sogenannte  Laplaceverteilung  mit der Wahrscheinlichkeitsdichtefunktion

$$f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$

Die Laplaceverteilung ist eine  zweiseitige Exponentialverteilung, die insbesondere die Amplitudenverteilung von Sprach– und Musiksignalen ausreichend gut approximiert.

  • Die Momente  $k$–ter Ordnung   ⇒   $m_k$  der Laplaceverteilung stimmen für geradzahliges  $k$  mit denen der Exponentialverteilung überein.
  • Für ungeradzahliges  $k$  ergibt sich bei der (symmetrischen) Laplaceverteilung dagegen stets  $m_k= 0$.


Zur Generierung verwendet man eine zwischen  $±1$  gleichverteilte Zufallsgröße  $v$  (wobei  $v = 0$  ausgeschlossen werden muss)  und die Transformationskennlinie

$$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$


Weitere Hinweise:

  • Aus der  Aufgabe 3.8  erkennt man weitere Eigenschaften der Laplaceverteilung.


Aufgaben zum Kapitel


Aufgabe 3.8: Verstärkung und Begrenzung

Aufgabe 3.8Z: Kreis(ring)fläche

Aufgabe 3.9: Kennlinie für Cosinus-WDF

Aufgabe 3.9Z: Sinustransformation