Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.2: Multi-Level Signals

From LNTwww
Revision as of 18:33, 6 December 2021 by Guenter (talk | contribs)


Two similar multi-stepped signals

Let the rectangular signal  x(t)  be dimensionless and can only have the current values  0, 1, 2, ... , M2, M1  with equal probability. The upper graph shows this signal for the special case  M=5.


The rectangular zero mean signal  y(t)  can also assume  M  different values. 

  • It is restricted to the range from  y0y+y0.
  • In the graph below you can see the signal  y(t), again for the level number  M=5.




Hints:




Questions

1

What is the linear mean  mx  of the random variable  x  for  M=5?

mx = 

2

What is the variance  σ2x  of the random variable  x  in general and for  M=5?

σ2x = 

3

Calculate the mean  my  of the random variable  y  for  M=5.

my = 

 V

4

What is the variance  σ2y  of the random variable  y  in general and for  M=5?  Consider the result from  (2).

σ2y = 

 V2


Solution

(1)  One obtains by averaging over all possible signal values for the linear mean:

mx=M1μ=0pμxμ=1MM1μ=0μ=1M(M1)M2=M12.
  • In the special case  M=5  the linear mean results in  mx=2_.


(2)  Analogously to  (1)  one obtains for the root mean square:

m2x=M1μ=0pμx2μ=1MM1μ=0μ2=1M(M1)M(2M1)6=(M1)(2M1)6.
  • In the special case M=5  the root mean square results in  m2x=6.
  • From this, the variance can be calculated using Steiner's theorem:
σ2x=m2xm2x=(M1)(2M1)6(M1)24=M2112.
  • In the special case  M=5  the result for the variance  σ2x=2_.


(3)  Because of the symmetry of  y,  it holds independently of  M:

my=0_.


(4)  The following relation holds between  x(t)  and  y(t):

y(t)=2y0M1[x(t)mx].
  • From this it follows for the variances:
σ2y=4y20(M1)2σ2x=y20(M21)3(M1)2=y20(M+1)3(M1).
  • In the special case  M=5  this results in:
σ2y=y20634=2V2_.