Binomial Distribution

From LNTwww

General description of the binomial distribution


$\text{Definition:}$  The  binomial distribution  represents an important special case for the occurrence probabilities of a discrete random variable.


To derive the binomial distribution, we assume that  $I$ binary and statistically independent random variables  $b_i$  each can achieve

  • the value  $1$  with probability  ${\rm Pr}(b_i = 1) = p$,  and
  • the value  $0$  with probability  ${\rm Pr}(b_i = 0) = 1-p$.


Then the sum  $z$  is also a discrete random variable with the symbol set   $\{0, \ 1, \ 2,\hspace{0.1cm}\text{ ...} \hspace{0.1cm}, \ I\}$, , which is called binomially distributed:

$$z=\sum_{i=1}^{I}b_i.$$

Thus, the symbol size is  $M = I + 1.$


$\text{Example 1:}$  The binomial distribution finds manifold applications in communications engineering as well as in other disciplines:

  1.   It describes the distribution of rejects in statistical quality control.
  2.   It allows the calculation of the residual error probability in blockwise coding.
  3.  Also the bit error rate of a digital transmission system obtained by simulation is actually a binomially distributed random quantity.

Probabilities of the binomial distribution.

Probabilities of the binomial distribution


$\text{Calculation rule:}$  For the  probabilities of the binomial distribution  with  $μ = 0, \hspace{0.1cm}\text{...} \hspace{0.1cm}, \ I$:

$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$

The first term here indicates the number of combinations   $($read:  $I\ \text{ over }\ μ)$:

$${I \choose \mu}=\frac{I !}{\mu !\cdot (I-\mu) !}=\frac{ {I\cdot (I- 1) \cdot \ \cdots \ \cdot (I-\mu+ 1)} }{ 1\cdot 2\cdot \ \cdots \ \cdot \mu}.$$


Additional notes:


Probabilites of the binomial distribution

$\text{Example 2:}$  The graph shows the probabilities of the binomial distribution are for  $I =6$  and  $p =0.4$.  Thus  $M = I+1=7$  probabilities are different from zero.

In contrast, for  $I = 6$  and  $p = 0.5$, the binomial probabilities are as follows:

$$\begin{align*}{\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}0) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}6)\hspace{-0.05cm} =\hspace{-0.05cm} 1/64\hspace{-0.05cm} = \hspace{-0.05cm}0.015625 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}1) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}5) \hspace{-0.05cm}= \hspace{-0.05cm}6/64 \hspace{-0.05cm}=\hspace{-0.05cm} 0.09375,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}2) & = {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}4)\hspace{-0.05cm} = \hspace{-0.05cm}15/64 \hspace{-0.05cm}= \hspace{-0.05cm}0.234375 ,\\ {\rm Pr}(z\hspace{-0.05cm} =\hspace{-0.05cm}3) & = 20/64 \hspace{-0.05cm}= \hspace{-0.05cm} 0.3125 .\end{align*}$$

These are symmetrical with respect to the abscissa value  $\mu = I/2 = 3$.


Another example of the application of the binomial distribution is the  calculation of the block error probability in digital transmission.

$\text{Example 3:}$  If one transmits blocks of  $I =10$  binary symbols each over a channel which is

  • with probability  $p = 0.01$  one symbol is corrupted   ⇒   random variable  $e_i = 1$,  and
  • correspondingly with probability  $1 - p = 0.99$  transmits the symbol uncorrupted   ⇒   random variable  $e_i = 0$,


then the new random variable  $f$  ("block error") is:

$$f=\sum_{i=1}^{I}e_i.$$

This random variable  $f$  can now take all integer values between  $0$  (no symbol corrupted)  and  $I$  (all symbols incorrect) .  We denote the probabilities for  $\mu$  corruptions by  $p_μ$.

  • The case where all  $I$  symbols are correctly transmitted occurs with probability  $p_0 = 0.99^{10} ≈ 0.9044$ . This also follows from the binomial formula for  $μ = 0$  considering definition  $10\, \text{ over }\, 0 = 1$.
  • A single symbol error  $(f = 1)$  occurs with the following probability:
$$p_1 = \rm 10\cdot 0.01\cdot 0.99^9\approx 0.0914.$$
The first factor considers that there are exactly  $10\, \text{ over }\, 1 = 10$  possibilities for the position of a single error.  The other two factors take into account that one symbol must be corrupted and nine must be transmitted correctly if  $f =1$  is to hold.
  • For  $f =2$  there are clearly more combinations, namely  $10\, \text{ over }\, 2 = 45$,  and we get
$$p_2 = \rm 45\cdot 0.01^2\cdot 0.99^8\approx 0.0041.$$

If a block code can correct up to two errors, the residual error probability is

$$p_{\rm R} = \it p_{\rm 3} \rm +\hspace{0.1cm}\text{ ...} \hspace{0.1cm} \rm + \it p_{\rm 10}\approx \rm 10^{-4},$$

oder

$$p_{\rm R} = \rm 1-\it p_{\rm 0}-\it p_{\rm 1}-p_{\rm 2}\approx \rm 10^{-4}.$$
  • One can see that the second possibility of calculation via the complement for large values of  $I$  leads faster to the goal.
  • However, one could also consider as an approximation that for these numerical values  $p_{\rm R} ≈ p_3$  holds.


Use the interactive applet  Binomial and Poisson distribution  to find the binomial probabilities for any  $I$  and  $p$ .


Moments of the binomial distribution


You can calculate the moments in general using the equations in the chapters  Moments of a discrete random variable  and  probabilities of the binomial distribution .

$\text{Calculation rules:} $  For the  $k$-th order moment  of a binomially distributed random variable, the general rule is:

$$m_k={\rm E}\big[z^k\big]=\sum_{\mu={\rm 0} }^{I}\mu^k\cdot{I \choose \mu}\cdot p\hspace{0.05cm}^\mu\cdot ({\rm 1}-p)\hspace{0.05cm}^{I-\mu}.$$

From this, after some transformations, we obtain for

  • the linear mean value:
$$m_1 ={\rm E}\big[z\big]= I\cdot p,$$
  • the rms value:
$$m_2 ={\rm E}\big[z^2\big]= (I^2-I)\cdot p^2+I\cdot p.$$

The variance and standard deviation are obtained by applyings "Steiner's theorem":

$$\sigma^2 = {m_2-m_1^2} = {I \cdot p\cdot (1-p)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \sigma = \sqrt{I \cdot p\cdot (1-p)}.$$


The maximum variance  $σ^2 = I/4$  is obtained for the "characteristic probability"  $p = 1/2$.  In this case, the probabilities are symmetric around the mean  $m_1 = I/2 \ ⇒ \ p_μ = p_{I–μ}$.

The more the characteristic probability  $p$  deviates from the value  $1/2$ ,

  • the smaller is the standard deviation  $σ$, and
  • the more asymmetric the probabilities become around the mean  $m_1 = I · p$.


$\text{Example 4:}$  As in  $\text{example 3}$ , we consider a block of  $I =10$  binary symbols, each of which is independently corrupted with probability  $p = 0.01$ .  Then holds:

  • The mean number of block errors is equal to  $m_f = {\rm E}\big[ f\big] = I · p = 0.1$.
  • Der standard deviation of the random variable  $f$  is  $σ_f = \sqrt{0.1 \cdot 0.99}≈ 0.315$.


In contrast, in the completely corrupted channel   ⇒   falsification probability (*besseres Wort als falsification für Verfälschung?*)  $p = 1/2$  results in the values

  • $m_f = 5$   ⇒   on average, five of the ten bits within a block are wrong,
  • $σ_f = \sqrt{I}/2 ≈1.581$   ⇒   maximum standard deviation  $I = 10$.

Exercises for the chapter


Exercise 2.3: Algebraic Sum of Binary Numbers

Exercise 2.4: Number Lottery (6 from 49)