Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exponentially Distributed Random Variables

From LNTwww

One-sided exponential distribution


Definition:  A continuous random variable  x  is called (one-sided)  exponentially distributed if it can take only non–negative values and the PDF for  x>0  has the following shape:

fx(x)=λeλx.


PDF and CDF of an exponentially distributed random variable

The left image shows the  probability density function  (PDF) of such an exponentially distributed random variable  x.  Highlight:

  • The larger the distribution parameter  λ  is, the steeper the decay occurs.
  • By definition  f_{x}(0) = λ/2, i.e. the mean of left-hand limit  (0)  and right-hand limit  (\lambda).


For the  cumulative distribution function  (right graph), we obtain for  r > 0  by integration over the PDF:

F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.

The  moments  of the one-sided exponential distribution are generally equal to  

m_k = k!/λ^k.

From this and from Steiner's theorem, we get for the mean and the dispersion:

m_1={1}/{\lambda},
\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.

\text{Example 1:}  The exponential distribution has great importance for reliability studies, and the term "lifetime distribution" is also commonly used in this context.

  • In these applications, the random variable is often the time  t that elapses before a component fails.
  • Furthermore, it should be noted that the exponential distribution is closely related to the  Poisson distribution .

Transformation of random variables


To generate such an exponentially distributed random variable on a digital computer, for example, a  nonlinear transformation  The underlying principle is first stated here in general terms.

\text{Procedure:}  If a continuous random variable  u  possesses the PDF  f_{u}(u), then the probability density function of the random variable transformed at the nonlinear characteristic  x = g(u)  x holds:

f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.

Here  g\hspace{0.05cm}'(u)  denotes the derivative of the characteristic curve  g(u)  and  h(x)  gives the inverse function to  g(u)  .


  • The above equation is valid, however, only under the condition that the derivative  g\hspace{0.03cm}'(u) \ne 0  .
  • For a characteristic with horizontal sections  (g\hspace{0.05cm}'(u) = 0)  additional Dirac functions appear in the PDF if the input quantity has components in the range.
  • The weights of these Dirac functions are equal to the probabilities that the input quantity lies in these domains.


To transform random variables

\text{Example 2:}  Given a random variable distributed between  -2  and  +2  triangularly  u  on a nonlinearity with characteristic  x = g(u),

  • which, in the range  \vert u \vert ≤ 1  triples the input values,  and
  • mapping all values  \vert u \vert > 1  to  x = \pm 3  depending on the sign,


then the PDF f_{x}(x) sketched on the right is obtained.


Please note:

(1)   Due to the amplification by a factor of  3  f_{x}(x)  is wider and lower than f_{u}(u) by this factor.

(2)   The two horizontal limits of the characteristic at  u = ±1  lead to the two Dirac functions at  x = ±3, each with weight  1/8.

(3)   The weight  1/8  corresponds to the green areas in the PDF f_{u}(u).

Generation of an exponentially distributed random variable


\text{procedure:}  Now we assume that the random variable to be transformed  u  is uniformly distributed between  0  (inclusive) and  1  (exclusive).  Moreover, we consider the monotonically increasing characteristic curve

x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).

It can be shown that by this characteristic  x=g_1(u)  a one-sided exponentially distributed random variable  x  with the following PDF arises 
(derivation see next page):

f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\it x}>0.
  • For  x = 0  the PDF value is half  (\lambda/2).
  • Negative  x values do not occur because for  0 ≤ u < 1  the argument of the (natural) logarithm function does not become smaller than  1.


By the way, the same PDF is obtained with the monotonically decreasing characteristic curve

x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).

Please note:

  • When using a computer implementation corresponding to the first transformation characteristic  x=g_1(u)  the value  u = 1  must be excluded.
  • If one uses the second transformation characteristic  x=g_2(u), on the other hand, the value  u =0  must be excluded.


The (German) learning video  Erzeugung einer Exponentialverteilung  \Rightarrow Generation of an exponential distribution, shall clarify the transformations derived here.

Derivation of the corresponding transformation characteristic


\text{Exercise:}  Now derive the transformation characteristic  x = g_1(u)= g(u)  already used on the last page, which is derived from a random variable  equally distributed between  0  and  1  ; u  with the probability density function (PDF)  f_{u}(u)  forms a one-sided exponentially distributed random variable  x  with the PDF  f_{x}(x)  :

f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm if\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm if\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\ 0 & \rm else, \end{array} \right. \hspace{0.5cm}\rightarrow \hspace{0.5cm} f_{x}(x)= \left\{ \begin{array}{*{2}{c} } \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm if\hspace{0.3cm} {\it x} > 0,\ \lambda/2 & \rm if\hspace{0.3cm} {\it x} = 0 ,\ 0 & \rm if\hspace{0.3cm} {\it x} < 0. \ \end{array} \right.


\text{Solution:} 

(1)  Starting from the general transformation equation.

f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}

is obtained by converting and substituting the given PDF f_{ x}(x):

\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.

Here  x = g\hspace{0.05cm}'(u)  gives the derivative of the characteristic curve, which we assume to be monotonically increasing.

(2)  With this assumption we get  \vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u  and the differential equation  {\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0. 05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x  with solution  u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.

(3)  From the condition that the input quantity  u =0  should lead to the output value  x =0 , we obtain for the constant  K =1  and thus  u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.

(4)  Solving this equation for  x  yields the equation given in front:

x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .
  • In a computer implementation, however, ensure that the critical value  1  is excluded for the equally distributed input variable  u   
  • This, however, has (almost) no effect on the final result.


Two-sided exponential distribution - Laplace distribution


Closely related to the exponential distribution is the so-called  Laplace distrubtion  with the probability density function

f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.

The Laplace distribution is a  two-sided exponential distribution that approximates sufficiently well, in particular, the amplitude distribution of speech– and music signals.

  • The moments  k–th order   ⇒   m_k  of the Laplace distribution agree with those of the exponential distribution for even  k  .
  • For odd  k  on the other hand, the (symmetric) Laplace distribution always yields  m_k= 0.


For generation one uses a between  ±1  equally distributed random variable  v  (where  v = 0  must be excluded)  and the transformation characteristic curve

x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).


Further notes:

  • From the  Exercise 3.8  one can see further properties of the Laplace distribution.
  • In the (German) learning video  Wahrscheinlichkeit und WDF  \Rightarrow Probability and PDF, it is shown which meaning the Laplace distribution has for the description of speech– and music signals.
  • With the applet  PDF, CDF and Moments  you can display the characteristics  (PDF, CDF, Moments)  of exponential and Laplace distributions.
  • We also refer you to the applet  Two-dimensional Laplace random quantities .


Exercises for the chapter


Aufgabe 3.8: Verstärkung und Begrenzung

Aufgabe 3.8Z: Kreis(ring)fläche

Aufgabe 3.9: Kennlinie für Cosinus-WDF

Aufgabe 3.9Z: Sinustransformation