Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.8: Diamond-shaped Joint PDF

From LNTwww
Revision as of 21:16, 25 February 2022 by Noah (talk | contribs)

Diamond–shaped joint PDF

We consider a two-dimensional random variable  (x,y)  whose components arise as linear combinations of two random variables  u  and  v:

x=2u2v+1,
y=u+3v.

Further,  note:

  • The two statistically independent random variables  u  and  v  are each uniformly distributed between  0  and  1.
  • In the figure you can see the joint PDF.  Within the parallelogram drawn in blue holds:
fxy(x,y)=H=const.
  • Outside the parallelogram no values are possible:  fxy(x,y)=0.



Hints:



Questions

1

What is the height H  of the joint PDF within the parallelogram?

H = 

2

What values of  u  and  v  underlie the vertex  (1,3) ?

u = 

v = 

3

Calculate the correlation coefficient  ρxy.

ρxy = 

4

What is the regression line  y=K(x)?  At what point  y0  does it intersect the  y axis?

y0 = 

5

Calculate the marginal probability density function fx(x).  What is the probability that the random variable  x  is negative?

Pr(x<0) = 

6

Calculate the marginal probability density function fy(y).  What is the probability that the random variableö&aerospace;e  y>3 ?

Pr(y>3) = 


Solution

(1)  The area of the parallelogram can be composed of two triangles of equal size.

  • The area of the triangle (1,0) (1,4) (1,3)  gives  0.5·4·2=4.
  • The total area is double:   F=8.
  • Since the PDF–volume is always  1 , then  H=1/F=0.125_.

(2)  The minimum value of  x  is obtained for  u=0_  and  v=1_.

  • From the above equations, the results  x=1  and  y=+3 follow.

(3)  The equation given in the theory section is valid in general, i.e., for any PDF of the two statistically independent variables  u  and  v,

  • as long as they have equal standard deviations  (σu=σv).
  • With  A=2B=2D=1  and  E=3  we obtain:
ρxy=AD+BE(A2+B2)(D2+E2)=2123(4+4)(1+9)=480=15=0.447_.


(4)  The regression line is generally:

y=K(x)=σyσxρxy(xmx)+my.
  • From the linear means  mu=mv=0.5  and the equations given in the problem statement, we obtain  mx=1  and  my=2.
  • The variances of  u  and  v  are respectively  σ2u=σ2v=1/12.  It follows:
σ2x=4σ2u+4σ2v=2/3,
σ2y=σ2u+9σ2v=5/6.
  • Substituting these values into the equation of the regression line, we get:
y=K(x)=5/62/3(15)(x1)+2=x/2+2.5.
  • From this follows the value  y0=K(x=0)=2.5_


(5)  With the auxiliary quantities   q=2u,   r=2v   and   s=x1  the relation holds:   s=q+r.

  • Since  u  and  v  are each uniformly distributed between  0  and  1  ,  q  has a uniform distribution in the range from  0  to  2  and  r  is uniformly distributed between  2  and  0.
  • In addition, since  q  and  r  are not statistically dependent on each other, the PDF of the sum is:
Triangular PDF fx(x)
fs(s)=fq(q)fr(r).
  • The addition  x=s+1  leads to a shift of the triangular–PDF by  1  to the right.
  • For the sought probability  (highlighted in green in the following image)  therefore holds:   Pr(x<0)=0.125_.


Trapezoidal PDF fy(y)

(6)  Analogous to the sample solution for the subtask  (5)  holds with  t=3v:

fy(y)=fu(u)ft(t).
  • The convolution between two rectangles of different widths results in a trapezoid.
  • For the probability we are looking for, we get  Pr(y>3)=1/60.167_.
  • This probability is highlighted in green in the right sketch.