Exercise 1.09Z: Extension and/or Puncturing
Often you know a code that seems to be suitable for an application, but its code rate does not exactly match the specifications.
There are several possibilities for rate adaptation:
Extension:
Starting from the $(n, \, k)$ code whose parity-check matrix $\mathbf{H}$ is given, one obtains a $(n+1, \, k)$ code by extending the parity-check matrix by one row and one column and adding zeros and ones to the new matrix elements according to the upper graph. So, one adds a new parity bit
- $$x_{n+1} = x_1 \oplus x_2 \oplus ... \hspace{0.05cm} \oplus x_n$$
and thus a new parity-check equation is added, which is considered in $\mathbf{H}\hspace{0.05cm}'$ .
Puncturing:
According to the figure below, one arrives at a $(n-1, \, k)$ code of larger rate by omitting a parity bit and a parity-check equation, which is equivalent to deleting one row and one column from the parity-check matrix $\mathbf{H}$ .
Shortening:
If an information bit is omitted instead of a parity bit, the result is a $(n-1, \, k-1)$ code of smaller rate.
In this exercise, starting from a $(5, \, 2)$ block code
- $$\mathcal{C} = \{ (0, 0, 0, 0, 0), \hspace{0.3cm} (0, 1, 0, 1, 1), \hspace{0.3cm} (1, 0, 1, 1, 0), \hspace{0.3cm} (1, 1, 1, 0, 1) \}$$
the following codes are to constructed and analyzed:
- one $(6, \, 2)$ code by single extension,
- one $(7, \, 2)$ code by extending it again,
- one $(4, \, 2)$ code by puncturing.
The parity-check matrix and the generator matrix of the systematic $(5, \, 2)$ code are:
- $${ \boldsymbol{\rm H}}_{(5,\ 2)} = \begin{pmatrix} 1 &0 &1 &0 &0\\ 1 &1 &0 &1 &0\\ 0 &1 &0 &0 &1 \end{pmatrix} \hspace{0.3cm} \Leftrightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{(5,\ 2)} = \begin{pmatrix} 1 &0 &1 &1 &0\\ 0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
Hints :
- This exercise belongs to the chapter "General Description of Linear Block Codes".
- In the "Exercise 1.9" it is exemplified how the $(7, \, 4, \, 3)$ Hamming code is turned into a $(8, \, 4, \, 4)$ code by extension.
Questions
Solution
- From the given code, we further recognize the minimum distance $d_{\rm min} \ \underline{ = 3}$.
(2) When extending from the $(5, \, 2)$ code to the $(6, \, 2)$ code, another parity bit is added.
- The codeword thus has the form
- $$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, p_1, p_2, p_{3}, p_4) \hspace{0.05cm}.$$
- For the added parity bit must be valid:
- $$p_4 = x_6 = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \hspace{0.05cm}.$$
- That is, the new parity bit $p_{4}$ is chosen to result in an even number of ones in each codeword ⇒ Answer 2.
- Solving this task with the parity-check matrix, we get
- $${ \boldsymbol{\rm H}}_{(6,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &1 &0 &0 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &0 &0 &1 &0\\ 1 &1 &1 &1 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{{\rm (6,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &0 &0 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &0 &0 &1 &0\\ 1 &1 &0 &0 &0 &1 \end{pmatrix}\hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{{\rm (6,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &1 &0 &1\\ 0 &1 &0 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$
- The two rows of the generator matrix $\boldsymbol{\rm G}$ give two of the four codewords, the modulo $2$ sum gives the third, and finally the all zero word has to be considered.
(3) After extension from the $(5, \, 2)$ code to the $(6, \, 2)$ code.
- decreases the rate from $R = 2/5$ to $R = 2/6 \ \underline{= 0.333}$,
- increases the minimum distance from $d_{\rm min} = 3$ to $d_{\rm min} \ \underline{= 4}$ .
In general: Extending a code, the rate decreases and the minimum distance increases by $1$ if $d_{\rm min}$ was odd before.
(4) Using the same procedure as in (3), we obtain
- $${ \boldsymbol{\rm H}}_{(7,\hspace{0.05cm} 2)} \hspace{-0.05cm}=\hspace{-0.05cm} \begin{pmatrix} 1 &0 &1 &0 &0 &0 &0\\ 1 &1 &0 &1 &0 &0 &0\\ 0 &1 &0 &0 &1 &0 &0\\ 1 &1 &0 &0 &0 &1 &0\\ 1 &1 &1 &1 &1 &1 &1 \end{pmatrix} \hspace{0.15cm} \Rightarrow\hspace{0.15cm} { \boldsymbol{\rm H}}_{{\rm (7,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} \hspace{-0.05cm}=\hspace{-0.05cm} \begin{pmatrix} 1 &0 &1 &0 &0 &0 &0\\ 1 &1 &0 &1 &0 &0 &0\\ 0 &1 &0 &0 &1 &0 &0\\ 1 &1 &0 &0 &0 &1 &0\\ 0 &0 &0 &0 &0 &0 &1 \end{pmatrix}\hspace{0.15cm} \Rightarrow\hspace{0.15cm} { \boldsymbol{\rm G}}_{{\rm (6,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} \hspace{-0.05cm}=\hspace{-0.05cm} \begin{pmatrix} 1 &0 &1 &1 &0 &1 &0 \\ 0 &1 &0 &1 &1 &1 &0 \end{pmatrix}\hspace{0.05cm}.$$
⇒ Both answers are correct.
(5) The rate is now $R = 2/7 = \underline{0.266}$.
- The minimum distance is still $d_{\rm min} \ \underline{= 4}$ , as can be seen from the $(7, \, 2)$ code words:
- $$\mathcal{C} = \{ (0, 0, 0, 0, 0, 0, 0), \hspace{0.1cm}(0, 1, 0, 1, 1, 1, 0), \hspace{0.1cm}(1, 0, 1, 1, 0, 1, 0), \hspace{0.1cm}(1, 1, 1, 0, 1, 0, 0) \}\hspace{0.05cm}.$$
In general: If the minimum distance of a code is even, it cannot be increased by extension.
(6) Correct are the statements 1 and 2:
- By crossing out the last row and the last column, we obtain for parity-check matrix and generator matrix, respectively (each in systematic form):
- $${ \boldsymbol{\rm H}}_{(4,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &1 &0 \\ 1 &1 &0 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{{\rm (4,\hspace{0.05cm} 2)}} = \begin{pmatrix} 1 &0 &1 &1 \\ 0 &1 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$
- From the generator matrix we get the mentioned codewords $(1, 0, 1, 1), \, (0, 1, 0, 1), \, (1, 1, 1, 0)$ as row sum as well as the null word $(0, 0, 0, 0)$. The minimum distance of this code is $d_{\rm min}= 2$, which is smaller than the minimum distance $d_{\rm min}= 3$ of the $(5, \, 2)$ code.
In general: Puncturing makes $d_{\rm min}$ smaller by $1$ (if it was even before) or it stays the same. This can be illustrated by generating the $(3, \, 2)$ block code by another puncturing (of the parity bit $p_{2}$). This code
- $$ \mathcal{C} = \{ (0, 0, 0), \hspace{0.1cm}(0, 1, 1), \hspace{0.1cm}(1, 0, 1), \hspace{0.1cm}(1, 1, 0) \}$$
has the same minimum distance $d_{\rm min}= 2$ as the $(4, \, 2)$ code.