Exercise 1.11Z: Syndrome Decoding again

From LNTwww
Revision as of 12:24, 20 July 2022 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Parity-check chart

The same constellation is considered as in  "Exercise 1.11":  The decoding of a  $(7, 4, 3)$  Hamming code with the parity-check matrix

$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

Accordingly,  the generator matrix is:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$

In  "syndrome decoding"  one forms from the received vector  $\underline{y}$  the syndrome  $\underline{s}$  according to the equation

$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$

With this result,  any single error in the code word can be corrected in the Hamming code under consideration.

  • In the error-free case  $\underline{s} = \underline{s}_{0} = (0, 0, 0)$.
  • But even three transmission errors may result in  $\underline{s}_{0} = (0, 0, 0)$,  so these errors remain undetected.




Hints:

  • For more information on syndrome decoding,  see the specification sheet for  "Exercise 1.11".
  • The graph illustrates the three parity-check equations corresponding to the parity-check matrix:
    • first row:   red circle,
    • second row:   green circle,
    • third row:   blue circle.



Questions

1

Is it a systematic code?

Yes,
No.

2

With received vector  $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$.  Is this a valid code word?

Yes,
No.

3

What syndrome results with this received word?

$\underline{s} = \underline{s}_{0} = (0, 0, 0),$
$\underline{s} = \underline{s}_{3} = (0, 1, 1),$
$\underline{s} = \underline{s}_{7} = (1, 1, 1).$

4

Which received words lead to the same syndrome as in subtask  (3)?

$\underline{y} = (1, 1, 0, 1, 0, 1, 0),$
$\underline{y} = (0, 1, 0, 1, 0, 0, 1),$
$\underline{y} = (0, 1, 1, 0, 1, 0, 1).$


Solution

(1)  The answer is  YES,  as can be seen from the given parity-check matrix  $\mathbf{H}$:

  • This contains a  $3×3$  diagonal matrix at the end.
  • The code words are therefore:
$$ \underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$


(2)  With this received vector  $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$,  all parity-check equations are satisfied:

$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm}.$$

Accordingly,  the correct answer is  YES.


(3)  It holds $\underline{s} = \underline{y} · \boldsymbol{\rm H}^{\rm T}$:

$$ \underline{s} = \begin{pmatrix} 1 &0 &0 &1 &0 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 0 &0 &0 \end{pmatrix} = \underline{s}_0 \hspace{0.2cm} \Rightarrow\hspace{0.2cm} \hspace{0.15cm} \underline{ \rm Answer \hspace{0.15cm}1} \hspace{0.05cm}.$$


(4)  One could now for each  $\underline{y}$  check the equation  $\underline{y} · \boldsymbol{\rm H}^{\rm T} = (0, 0, 0)$.  Now here the result shall be obtained in a different way:

  • $\underline{y}= (1, 1, 0, 1, 0, 1, 0)$  differs from  $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$  in bit  $u_{2}$,  which is used only in the first two parity-check equations,  but not in the last ⇒ $\underline{s} = \underline{s}_{6} = (1, 1, 0)$.
  • Applying the parity-check equations to  $\underline{y} = (0, 1, 0, 1, 0, 0, 1)$,  we obtain $\underline{s} = \underline{s}_{0} = (0, 0, 0)$, as evidenced by the following calculation:
$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm}.$$
  • The same result is obtained with the received vector  $\underline{y} = (0, 1, 1, 0, 1, 0, 1),$  which differs from the vector  $(1, 0, 0, 1, 0, 1, 0)$  in all seven bit positions:
$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 1 \oplus 1 \oplus 0 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm}.$$

So the correct answers are  answers 2 and 3.