Exercise 3.3Z: Convolution and D-Transformation

From LNTwww
Revision as of 17:47, 10 November 2022 by Guenter (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Predefined filter structure

In this exercise, we use a simple example to describe

  • the finite  »impulse response«  of a filter:
$$\underline{g} = \left (g_0, g_1, \hspace{0.05cm}\text{...}\hspace{0.1cm}, g_l, \hspace{0.05cm}\text{...}\hspace{0.1cm}, g_m \right ) \hspace{0.05cm},\hspace{0.2cm}g_l \in {\rm GF(2) } = \{ 0, 1 \}\hspace{0.05cm}, $$
  • the  »input sequence«  of the filter:
$$\underline{u} = \left (u_0, u_1, \hspace{0.05cm}\text{...}\hspace{0.1cm}, u_i, \hspace{0.05cm}\text{...}\hspace{0.1cm} \right ) \hspace{0.05cm},\hspace{0.2cm}u_i \in {\rm GF(2) } = \{ 0, 1 \}\hspace{0.05cm}, $$
  • the  »output sequence«  of the filter:
$$\underline{x} = \left (x_0, x_1, \hspace{0.05cm}\text{...}\hspace{0.1cm}, x_i, \hspace{0.05cm}\text{...}\hspace{0.1cm} \right ) \hspace{0.05cm},\hspace{0.2cm}x_i \in {\rm GF(2) } = \{ 0, 1 \}\hspace{0.05cm}. $$

We have adapted the nomenclature for this  $($digital$)$  filter description to the book  "Introduction to Channel Coding".  In other  $\rm LNTww$ books often 

  1.  $\underline{x}$  denotes the filter input, 
  2.  $\underline{y}$  the filter output,  and
  3.  the impulse response is called  $\underline{h}$.


In general,  for the output sequence corresponding to the  $\text{convolution}$ :

$$\underline{x} = \underline{u}* \underline{g} = \left (x_0, x_1, \hspace{0.05cm}\text{...}\hspace{0.1cm}, x_i, \hspace{0.05cm}\text{...}\hspace{0.1cm} \right )\hspace{0.05cm},\hspace{0.1cm} {\rm with} \hspace{0.2cm} x_i = \sum_{l = 0}^{m} g_l \cdot u_{i-l}\hspace{0.05cm}.$$
  • We now represent the time functions   $\underline{g}, \ \underline{u}$   and   $\underline{x}$  by polynomials in a dummy variable  $D$  and call these the  D–transforms:
$$\underline{g} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {G}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{l = 0}^{m} g_l \cdot D\hspace{0.03cm}^l = g_0 + g_1 \cdot D + g_2 \cdot D^2 + \text{...} + g_m \cdot D\hspace{0.03cm}^m\hspace{0.05cm},$$
$$\underline{u} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {U}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{i = 0}^{\infty} u_i \cdot D\hspace{0.03cm}^i = u_0 + u_1 \cdot D + u_2 \cdot D^2 + \text{...} \hspace{0.05cm},$$
$$\underline{x} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{i = 0}^{\infty} x_i \cdot D\hspace{0.03cm}^i = x_0 + x_1 \cdot D + x_2 \cdot D^2 + \text{...} \hspace{0.05cm}.$$
  • Thus the  $($more complicated$)$  convolution becomes a multiplication:
$$\underline{x} = \underline{u}* \underline{g} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}(D) = U(D) \cdot G(D) \hspace{0.05cm}.$$
  • Formally,  this relationship can be demonstrated as follows:
$${X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{i = 0}^{\infty} x_i \cdot D\hspace{0.03cm}^i = \sum_{i = 0}^{\infty} \sum_{l = 0}^{m}\hspace{0.1cm} g_l \cdot u_{i-l} \cdot D\hspace{0.03cm}^{i} = \sum_{l = 0}^{m} \hspace{0.1cm} g_l \cdot \sum_{j = -l}^{\infty} \hspace{0.1cm} u_{j} \cdot D\hspace{0.03cm}^{j+l} = \sum_{l = 0}^{m} \hspace{0.1cm} g_l \cdot D\hspace{0.03cm}^l \hspace{0.1cm} \cdot \hspace{0.1cm} \sum_{j = 0}^{\infty} \hspace{0.1cm} u_{j} \cdot D\hspace{0.03cm}^{j}$$
$$\Rightarrow \hspace{0.3cm}{X}(D) = U(D) \cdot G(D) \hspace{0.05cm}.$$
  • Here it was considered that all   $u_j$   for  $j < 0$  do not exist and can be set to zero.
  • Both procedures for computing the initial sequence  $\underline{x}$  shall be demonstrated for the digital filter outlined above,  viz.
  1.   using the convolution,
  2.   by means of the D–transformation.



Hints:

  • In the solution,  consider the following identity for calculations in  $\rm GF(2)$:
$$1 + D + D^2 + D^3 + \hspace{0.05cm}\text{...}\hspace{0.1cm}= \frac{1}{1+D} \hspace{0.05cm}.$$



Questions

1

What are the present filter coefficients?

$g_0 \ = \ $

$g_1 \ = \ $

$g_2 \ = \ $

2

The sequence  $\underline{u} = (1, \, 0, \, 0, \, 1)$  let be finite.  What is the output sequence?

$\underline{x} = (1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$.
$\underline{x} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$.
$\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$.
$\underline{x} = (1, \, 1, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$   ⇒   "sequence of ones".

3

The sequence  $\underline{u} = (1, \, 1, \, 1)$  let be finite.  What is the output sequence?

$\underline{x} = (1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$.
$\underline{x} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$.
$\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$.
$\underline{x} = (1, \, 1, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$   ⇒   "sequence of ones".

4

What is the output sequence for  $\underline{u} = (1, \, 1, \, 1, \, 1, \, \text{...}\hspace{0.05cm}.)$   ⇒   "sequence of ones"?

$\underline{x} = (1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$.
$\underline{x} = (1, \, 0, \, 0, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$.
$\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \,\text{...}\hspace{0.05cm})$.
$\underline{x} = (1, \, 1, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$   ⇒   "sequence of ones".

5

For which vector  $\underline{u}$  does the sequence  $\underline{x} = (1, \, 1, \, 1, \, 1, \ \text{...}\hspace{0.05cm})$  occur at the output?

$\underline{u} = (1, \, 1, \, 1, \, 1, \, \text{...}\hspace{0.05cm})$   ⇒   "sequence of ones"
$\underline{u} = (1, \, 0, \, 1, \, 0, \, 1, \, 0, \,\text{...}\hspace{0.05cm})$   ⇒   alternating sequence, starting with  "$1$".
$\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 1, \, \text{...}\hspace{0.05cm})$   ⇒   alternating sequence, starting with  "$0$".


Solution

(1)  The only two filter coefficients different from  $0$  are  $g_0 \ \underline{= 1}$  and  $g_1 \ \underline{= 1}$.

  • From this follows  $g_2 \ \underline{= 0}$  and for the D–transform of the impulse response:
$$\underline{g} = (1\hspace{0.05cm},\hspace{0.05cm} 1) \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {G}(D) = 1+ D \hspace{0.05cm}.$$


(2)  The impulse response of the considered filter is  $\underline{g} = (1, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$.

  • For the output sequence,  therefore,  we obtain the convolution product
$$\underline{x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \underline{u}* \underline{g} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} ...\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm}) =(1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} ...\hspace{0.05cm}) \hspace{0.05cm}.$$
  • The same result is obtained using the D–transforms  $U(D) = 1 + D^3$  and  $G(D) = 1 + D$:
$${X}(D) = U(D) \cdot G(D) = ( 1+D^3) \cdot (1+D) = 1 +D + D^3 +D^4 \hspace{0.05cm}.$$
  • The inverse transformation leads again to the result  $\underline{x} = (1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 0, \, \text{...}\hspace{0.05cm})$   ⇒   Proposed solution 3.


(3)  Here we immediately use the path over the D–transforms:

$${X}(D) = ( 1+D+D^2) \cdot (1+D) = 1 +D + D +D^2 +D^2 +D^3 = 1+ D^3\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm}.$$
  • The result corresponds to the  proposed solution 2.  The following calculation is to illustrate the path in the time domain:
$$(1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{-0.15cm} \ = \ \hspace{-0.15cm}(1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm},$$
$$(0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{-0.15cm} \ = \ \hspace{-0.15cm}(0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm},$$
$$(0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} ... \hspace{0.05cm})\hspace{-0.15cm} \ = \ \hspace{-0.15cm}(0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm}.$$
  • Since the convolution is a linear operation,  in the Galois field  ${\rm GF}(2)$  results from summation:
$$(1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm}) * (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.05cm})\hspace{0.08cm}=\hspace{0.08cm}(1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm}\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0,\hspace{0.05cm} \text{...}\hspace{0.05cm}) \hspace{0.05cm}.$$
  • If the convolution had been performed not in  ${\rm GF}(2)$  but for real numbers,  we would have obtained the result  $\underline{x} = (1, \, 2, \, 2, \, 1, \, 0, \, 0, \, \text{...})$.


(4)  The sample solution to the subtask  (3)  already suggests that the  proposed solution 1  is correct here.

  • The way over the D–transforms confirms this result:
$$\underline{u} = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm}) \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {U}(D)= 1+ D + D^2+ D^3 + \text{...}\hspace{0.15cm}.$$
  • Using the equation valid for calculations in  ${\rm GF}(2)$
$$1 + D + D^2 + D^3 + \hspace{0.05cm}\text{...} \hspace{0.1cm}= \frac{1}{1+D}$$
one further obtains:
$${X}(D) = U(D) \cdot G(D) = \frac{1}{1+D} \cdot (1+D) = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm}) \hspace{0.05cm}.$$


(5)  The path over the D–transforms leads to  solution 2.

  • For this alternating sequence  $\underline{u}$,  starting with  $1$,  one obtains:
$${X}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 \cdot (1+D) + D^2 \cdot (1+D) + D^4 \cdot (1+D) + \text{...} = 1 + D + D^2 + D^3 + D^4 + D^5 +\hspace{0.05cm} ... \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{x} = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.05cm}) \hspace{0.05cm}.$$
  • This result can also be read by direct application of the convolution as in subtask  (2).
  • With  $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 1, \, \text{...})$  you get  $\underline{x} = (0, \, 1, \, 1, \, 1, \, 1, \, 1, \,\text{...})$.
  • This differs from the  "sequence of ones"  only in the first bit.  It is then  $x_1 = 0$  instead of  $x_1 = 1$.