Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Sampling of Analog Signals and Signal Reconstruction

From LNTwww
Revision as of 18:02, 20 April 2023 by Guenter (talk | contribs)

Open Applet in new Tab   Deutsche Version Öffnen

Applet Description


The applet deals with the system components  "sampling"  and  "signal reconstruction", two components that are of great importance for understanding the  "Puls code modulation"  (PCM)  for example.   The upper graphic shows the model on which this applet is based.  Below it are the samples  x(νTA)  of the time continuous signal  x(t). The (infinite) sum over all these samples is called the sampled signal  xA(t).

Top:    Underlying model for sampling and signal reconstruction
Bottom:   Example for time discretization of the continuous–time signal  x(t)
  • At the transmitter, the time discrete (sampled) signal  xA(t)  is obtained from the continuous–time signal  x(t).  This process is called  sampling   or  A/D conversion.
  • The corresponding program parameter for the transmitter is the sampling rate  fA=1/TA.  The lower graphic shows the sampling distance  TA .
  • In the receiver, the discrete-time received signal  yA(t)  is used to generate the continuous-time sink signal  y(t)    ⇒   signal reconstruction  or  D/A conversion  corresponding to the receiver frequency response  HE(f).


The applet does not consider the PCM blocks  "Quantization"and  "encoding/decoding".   The digital transmission channel is assumed to be ideal. 

Receiver frequency response  HE(f)

The following consequences result from this:

  • In the program simplifying  yA(t)=xA(t)  is set.
  • With suitable system parameters, the error signal   ε(t)=y(t)x(t)0  is therefore also possible.


The sampling theorem and the signal reconstruction can be better explained in the frequency domain.  Therefore all spectral functions are displayed in the program;

             X(f)  x(t)XA(f)  xA(t)Y(f)  y(t)E(f)  ε(t). 

Parameters for the receiver frequency response  HE(f)  are the cut–off frequency and the rolloff factor  (see lower graph):

fG=f2+f12,r=f2f1f2+f1.

Notes:

(1)   All signal values are normalized to  ±1.

(2)   The power calculation is done by integration over the respective period duration  T0:

Px=1T0T00x2(t) dt,Pε=1T0T00ε2(t).

(3)   The signal power  Px  and the distortion power  Pε  are also output in normalized form, which implicitly assumes the reference resistance  R=1Ω ;

(4)   From these the signal–distortion–distance  10lg (Px/Pε)  can be calculated.

(5)   Does the spectral function  X(f)  for positive frequencies consists of  I  Dirac delta lines with the (possibly complex) weights  X1, ... , XI,
          so applies to the transmission power taking into account the mirror-image lines at the negative frequencies:

Px=2Ii=1|Xk|2.

(6)   Correspondingly, the following applies to the distortion power if the spectral function  E(f)  in the range  f>0  has  J  Dirac delta lines with weights  E1, ... , EJ:

Pε=2Jj=1|Ej|2.

Theoretical Background

Description of sampling in the time domain

For the time discretization of the continuous-time signal  x(t)

In the following, we use the following nomenclature to describe the sampling:

  • let the continuous-time signal be  x(t).
  • Let the time-discretized signal sampled at equidistant intervals  TA  be  xA(t).
  • Out of the sampling time points  νTA  always holds  xA(t)0.
  • The run variable  ν  be an  "integer":     \nu \in \mathbb{Z} = \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} .
  • In contrast, at the equidistant sampling times with the constant  K, the result is:
x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.

The constant depends on the type of time discretization. For the above sketch K = 1 is valid.

Description of sampling with the Dirac delta pulse

In the following, we assume a slightly different form of description.  The following pages will show that these equations, which take some getting used to, do lead to useful results if they are applied consistently.

\text{Definitions:} 

  • By  sampling  we mean here the multiplication of the time-continuous signal  x(t)  by a  Dirac delta pulse:
x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.
  • The  Dirac delta pulse (in the time domain)  consists of infinitely many Dirac delta pulses, each equally spaced  T_{\rm A}  and all with equal pulse weight  T_{\rm A}:
p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.


Based on this definition, the following properties result for the sampled signal:

x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.
  • The sampled signal at the considered time  (\nu \cdot T_{\rm A})  ist gleich  T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0).
  • Since  \delta (t)  at time  t = 0  is infinite, actually all signal values  x_{\rm A}(\nu \cdot T_{\rm A})  are also infinite and also the factor  K introduced above.
  • Two samples  x_{\rm A}(\nu_1 \cdot T_{\rm A})  and  x_{\rm A}(\nu_2 \cdot T_{\rm A})  however, differ in the same proportion as the signal values  x(\nu_1 \cdot T_{\rm A})  and  x(\nu_2 \cdot T_{\rm A}).
  • The samples of  x(t)  appear in the pulse weights of the Dirac delta functions:
  • The additional multiplication by  T_{\rm A}  is necessary so that  x(t)  and  x_{\rm A}(t)  have the same unit.  Note here that  \delta (t)  itself has the unit "1/s".


Description of sampling in the frequency domain

The spectrum of the sampled signal  x_{\rm A}(t)  is obtained by applying the  "Convolution Theorem". This states that multiplication in the time domain corresponds to convolution in the spectral domain:

x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.

If one develops the  Dirac delta pulse  p_{\delta}(t)   (in the time domain)   into a  "Fourier Series"  and transforms it using the  "Shifting Theorem"  into the frequency domain, the following correspondence   ⇒   "proof" results with the distance  f_{\rm A} = 1/T_{\rm A}  of two adjacent dirac delta lines in the frequency domain:

p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ).
Dirac delta pulse in time and frequency domain with  T_{\rm A} = 50\ {\rm µs}  und  f_{\rm A} = 1/T_{\rm A} = 20\ \text{kHz}

The result states:

  • The Dirac delta pulse  p_{\delta}(t)  in the time domain consists of infinitely many Dirac delta pulses, each at the same distance  T_{\rm A}  and all with the same pulse weight  T_{\rm A}.
  • The Fourier transform of  p_{\delta}(t)  again gives a Dirac delta pulse, but now in the frequency domain   ⇒   P_{\delta}(f).
  • Also  P_{\delta}(f)  consists of infinitely many Dirac delta pulses, now in the respective spacing  f_{\rm A} = 1/T_{\rm A}  and all with pulse weight  1.
  • The distances of the Dirac delta lines in time and frequency domain thus follow the  "Reciprocity Theorem":   T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.


From this follows:   From the spectrum  X(f)  is obtained by convolution with the Dirac delta line shifted by  \mu \cdot f_{\rm A} :

X(f) \star \delta (f- \mu \cdot f_{\rm A} )= X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.

Applying this result to all Dirac delta lines of the Dirac delta pulse, we finally obtain:

X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.

\text{Conclusion:}  Sampling the analog time signal  x(t)  at equidistant intervals  T_{\rm A}  results in the spectral domain in a  periodic continuation  of  X(f)  with frequency spacing  f_{\rm A} = 1/T_{\rm A}.


Spectrum of the sampled signal

\text{Example 1:}  The upper graph shows  (schematic!)  the spectrum  X(f)  of an analog signal  x(t), which contains frequencies up to  5 \text{ kHz} .

Sampling the signal at the sampling rate  f_{\rm A}\,\text{ = 20 kHz}, i.e., at the respective spacing  T_{\rm A}\, = {\rm 50 \, µs}  yields the periodic spectrum  X_{\rm A}(f) sketched below.

  • Since the Dirac delta functions are infinitely narrow, the sampled signal  x_{\rm A}(t)  also contains arbitrary high frequency components.
  • Correspondingly, the spectral function  X_{\rm A}(f)  of the sampled signal is extended to infinity.


Signal reconstruction

Joint model of "signal sampling" and "signal reconstruction"

Signal sampling is not an end in itself in a digital transmission system, but it must be reversed at some point  For example, consider the following system:

  • The analog signal  x(t)  with bandwidth  B_{\rm NF}  is sampled as described above.
  • At the output of an ideal transmission system, the also discrete-time signal  y_{\rm A}(t) = x_{\rm A}(t)  is present.
  • The question now is how the block   signal reconstruction   has to be designed so that also  y(t) = x(t)  holds.
Frequency domain representation of the "signal reconstruction"


The solution is simple if you look at the spectral functions:  

One obtains from  Y_{\rm A}(f)  the spectrum  Y(f) = X(f)  by a low-pass filter with the  "Frequency response"  H_{\rm E}(f), which 

  • passes the low frequencies unaltered:
H_{\rm E}(f) = 1 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \le B_{\rm NF}\hspace{0.05cm},
  • completely suppresses the high frequencies:
H_{\rm E}(f) = 0 \hspace{0.3cm}{\rm{for}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm NF}\hspace{0.05cm}.

Further, it can be seen from the accompanying graph:   As long as the above two conditions are satisfied,  H_{\rm E}(f)  can be arbitrarily shaped in the range from  B_{\rm NF}  to  f_{\rm A}-B_{\rm NF}  ,

  • for example linearly descending (dashed line)
  • or also rectangular.


The Sampling Theorem

The complete reconstruction of the analog signal  y(t)  from the sampled signal  y_{\rm A}(t) = x_{\rm A}(t)  is only possible if the sampling rate  f_{\rm A}  corresponding to the bandwidth  B_{\rm NF}  of the message signal has been chosen correctly.

From the above graph, it can be seen that the following condition must be satisfied:   f_{\rm A} - B_{\rm NF} > B_{\rm NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm NF}\hspace{0.05cm}.

\text{Sampling theorem:}  If an analog signal  x(t)  has only spectral components in the range  \vert f \vert < B_{\rm NF}, it can be completely reconstructed from its sampled signal  x_{\rm A}(t)  only if the sampling rate is sufficiently large:

f_{\rm A} ≥ 2 \cdot B_{\rm NF}.

Accordingly, the following must apply to the distance between two samples:

T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm NF} }\hspace{0.05cm}.


If the largest possible value   ⇒   T_{\rm A} = 1/(2B_{\rm NF})  is used for sampling,

  • so, for signal reconstruction of the analog signal from its samples.
  • an ideal, rectangular low-pass filter with cut off frequency  f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})  must be used.


\text{Example 2:}  The graph shows above the spectrum  \pm\text{ 5 kHz}  of an analog signal limited to  X(f)  below the spectrum  X_{\rm A}(f)  of the signal sampled at distance  T_{\rm A} =\,\text{ 100 µs}  ⇒   f_{\rm A}=\,\text{ 10 kHz}.

Sampling theorem in the frequency domain

Additionally drawn is the frequency response  H_{\rm E}(f)  of the low-pass receiving filter for signal reconstruction, whose cutoff frequency must be exactly  f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz} .


  • With any other  f_{\rm G} value, there would be  Y(f) \neq X(f).
  • For  f_{\rm G} < 5\,\text{ kHz}  the upper  X(f) portions are missing.
  • At  f_{\rm G} > 5\,\text{ kHz}  there are unwanted spectral components in  Y(f) due to convolution products.


If at the transmitter the sampling had been done with a sampling rate  f_{\rm A} < 10\,\text{ kHz}    ⇒   T_{\rm A} >100 \ {\rm µ s}, the analog signal  y(t) = x(t)  would not be reconstructible from the samples  y_{\rm A}(t)  in any case.


Exercises

  • First, select the number  (1,\ 2, \text{...} \ )  of the task to be processed.  The number  0  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values are adjusted.  Solution after pressing "Show Solution".
  • All signal values are to be understood as normalized to  \pm 1.  Powers are normalized values, too.


(1)  Source signal:  x(t) = A \cdot \cos (2\pi \cdot f_0 \cdot t -\varphi)  with  f_0 = \text{4 kHz}.   Sampling with  f_{\rm A} = \text{10 kHz}.  Rectanglular low-pass;  cut off frequency:  f_{\rm G} = \text{5 kHz}.
            Interpret the shown graphics and evaluate the present signal reconstruction for all permitted parameter values of A  and \varphi.

  •  The spectrum  X(f)  consists of two Dirac functions at  \pm \text{4 kHz}, each with impulse weight  0.5.
  •  By the periodic continuation  X_{\rm A}(f)  has lines of equal height at  \pm \text{4 kHz}\pm \text{6 kHz}\pm \text{14 kHz}\pm \text{16 kHz}\pm \text{24 kHz}\pm \text{26 kHz},  etc.
  •  The rectangular low-pass with the cut off frequency  f_{\rm G} = \text{5 kHz}  removes all lines except the two at  \pm \text{4 kHz}  ⇒  Y(f) =X(f)  ⇒  y(t) =x(t)  ⇒   P_\varepsilon = 0.
  •  The signal reconstruction works here perfectly  (P_\varepsilon = 0)  for all amplitudes A  and any phases \varphi.


(2)  Continue with  A=1f_0 = \text{4 kHz}\varphi=0f_{\rm A} = \text{10 kHz}f_{\rm G} = \text{5 kHz}.   What is the influence of the rolloff–factors  r=0.2r=0.5  and   r=1?
          Specify the power values  P_x  and  P_\varepsilon .   For which  r–values is  P_\varepsilon= 0?  Do these results also apply to other  A  and  \varphi?

  •  With  |X(f = \pm \text{4 kHz})|=0.5  the signal power is  P_x = 2\cdot 0.5^2 = 0.5.  The distortion power  P_\varepsilon  depends significantly on the rolloff–factor  r .
  •  P_\varepsilon  is zero for  r \le 0.2.  Then the  X_{\rm A}(f) line at  f_0 = \text{4 kHz}  is not changed by the low-pass and the unwanted  line at  \text{6 kHz}  is fully suppressed.
  •  r = 0.5 :  Y(f = \text{4 kHz}) = 0.35Y(f = \text{6 kHz}) = 0.15  ⇒   |E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 15  ⇒  P_\varepsilon = 0.09  ⇒  10 \cdot \lg \ (P_x/P_\varepsilon)=7.45\ \rm dB.
  • r = 1.0 :  Y(f = \text{4 kHz}) = 0.3Y(f = \text{6 kHz}) = 0.2  ⇒   |E(f = \text{4 kHz})| = |E(f = \text{6 kHz})|= 0. 2  ⇒  P_\varepsilon = 0.16  ⇒  10 \cdot \lg \ (P_x/P_\varepsilon)=4.95\ \rm dB.
  •  For all  r  the distortion power P_\varepsilon  is independent of  \varphi.   The amplitude  A  affects  P_x  and  P_\varepsilon  in the same way   ⇒   the quotient is independent of  A.


(3)  Now apply  A=1f_0 = \text{5 kHz}\varphi=0f_{\rm A} = \text{10 kHz}f_{\rm G} = \text{5 kHz}r=0  (rectangular low–pass).   Interpret the result of the signal reconstruction.

  •   X(f)  consists of two Dirac delta lines at  \pm \text{5 kHz}  (weight  0.5).  By periodic continuation  X_{\rm A}(f)  has lines at  \pm \text{5 kHz}\pm \text{15 kHz}\pm \text{25 kHz},  etc.
  •   The  rectanglular low-pass  removes the lines at  \pm \text{15 kHz}\pm \text{25 kHz}.  The lines at  \pm \text{5 kHz}  are halved because of  H_{\rm E}(\pm f_{\rm G}) = H_{\rm E}(\pm \text{5 kHz}) = 0.5.
  •    ⇒   \text{Weights of }X(f = \pm \text{5 kHz})0.5   #   \text{Weights of }X(f_{\rm A} = \pm \text{5 kHz})1. 0;     #   \text{Weights of }Y(f = \pm \text{5 kHz})0.5   ⇒   Y(f)=X(f).
  •  So the signal reconstruction works perfectly here too  (P_\varepsilon = 0).  The same is true for the phase  \varphi=180^\circ   ⇒   x(t) = -A \cdot \cos (2\pi \cdot f_0 \cdot t).


(4)  The settings of  (3)  continue to apply except for  \varphi=30^\circ.  Interpret the differences from the setting  (3)   ⇒   \varphi=0^\circ.

  •  Phase relations are lost.  The sink signal  y(t)  is cosine-shaped  (\varphi_y=0^\circ)  with by the factor  \cos(\varphi_x)  smaller amplitude than the source signal  x(t).
  •  Justification in the frequency domain:  In the periodic continuation of  X(f)  ⇒  X_{\rm A}(f)  only the real parts are to be added.  The imaginary parts cancel out.
  •  The Dirac delta line of  X(f)  at frequency  f_0   ⇒   X(f_0)  is complex,   Y(f_0)  is real, and  E(f_0)  is imaginary   ⇒   \varepsilon(t)  is minus–sinusoidal   ⇒   P_\varepsilon = 0. 125.


(5)  Illustrate again the result of  (4)  compared to the settings  f_0 = \text{5 kHz}\varphi=30^\circf_{\rm A} = \text{11 kHz}f_{\rm G} = \text{5.5 kHz}.

  •  With this setting, the spectrum  X_{\rm A}(f)  also has a positive imaginary part at  \text{5 kHz}  and a negative imaginary part of the same magnitude at  \text{6 kHz}.
  •  The rectangular low-pass with cutoff frequency  \text{5.5 kHz}  removes this second component.  Thus, with the new setting  Y(f) =X(f)   ⇒   P_\varepsilon = 0.
  •  Any f_0 oscillation of arbitrary phase is error-free reconstructible from its samples if  f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2  (any small \mu>0).
  •  For value–continuous spectrum with   X(|f|> f_0) \equiv 0  ⇒   \big[no diraclines at \pm f_0 \big ]  the sampling rate  f_{\rm A} = 2 \cdot f_{\rm 0}  is sufficient in principle.

(5)  Verdeutlichen Sie sich nochmals das Ergebnis von  (4)  im Vergleich zu den Einstellungen  f_0 = \text{5 kHz}\varphi=30^\circf_{\rm A} = \text{11 kHz}f_{\rm G} = \text{5.5 kHz}.

  •  Bei dieser Einstellung hat das  X_{\rm A}(f)–Spektrum auch einen positiven Imaginärteil bei  \text{5 kHz}  und einen negativen Imaginärteil gleicher Höhe bei  \text{6 kHz}.
  •  Der Rechteck–Tiefpass mit der Grenzfrequenz  \text{5.5 kHz}  entfernt diesen zweiten Anteil.  Somit ist bei dieser Einstellung  Y(f) =X(f)   ⇒   P_\varepsilon = 0.
  •  Jede  f_0–Schwingung beliebiger Phase ist fehlerfrei aus seinen Abtastwerten rekonstruierbar, falls  f_{\rm A} = 2 \cdot f_{\rm 0} + \mu, \ f_{\rm G}= f_{\rm A}/2  (beliebig kleines \mu>0).
  •  Bei wertkontinuierlichem Spektrum mit   X(|f|> f_0) \equiv 0  ⇒   \big[keine Diraclinien bei \pm f_0 \big ] genügt grundsätzlich die Abtastrate  f_{\rm A} = 2 \cdot f_{\rm 0}.


(6)  The settings of  (3)  and  (4)  continue to apply except for  \varphi=90^\circ.  Interpret the plots in the time and frequency domain.

  •  The source signal is sampled exactly at its zero crossings   ⇒   x_{\rm A}(t) \equiv 0   ⇒     y(t) \equiv 0   ⇒   \varepsilon(t)=-x(t)   ⇒   P_\varepsilon = P_x   ⇒   10 \cdot \lg \ (P_x/P_\varepsilon)=0\ \rm dB.
  •  Description in the frequency domain:   As in  (4)  the imaginary parts of  X_{\rm A}(f)  cancel out.  Also the real parts of  X_{\rm A}(f)  are zero because of the sinusoid.


(7)  Now consider the  \text {Source Signal 2}.  Let the other parameters be  f_{\rm A} = \text{5 kHz}f_{\rm G} = \text{2.5 kHz}r=0.  Interpret the results.

  •  The source signal has spectral components up to  \pm \text{2 kHz}.  The signal power is P_x = 2 \cdot \big[0.1^2 + 0.25^2+0.15^2\big]= 0.19
  •  With the sampling rate  f_{\rm A} = \text{5 kHz}  and the receiver parameters  f_{\rm G} = \text{2.5 kHz}  and  r=0, the signal reconstruction works perfectly:  P_\varepsilon = 0.
  •  Likewise with the trapezoidal low–pass with  f_{\rm G} = \text{2.5 kHz}, if for the rolloff factor holds:  r \le 0.2.


(8)  What happens if the cutoff frequency  f_{\rm G} = \text{1.5 kHz}  of the rectangular low–pass filter is too small?  In particular, interpret the error signal  \varepsilon(t)=y(t)-x(t).

  •  The error signal  \varepsilon(t)=-0.3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t -60^\circ)=0. 3 \cdot \cos(2\pi \cdot \text{2 kHz} \cdot t +120^\circ)  is equal to the (negated) signal component at  \text{2 kHz}
  •  The distortion power is  P_\varepsilon=2 \cdot 0.15^2= 0.045  and the signal–to–distortion ratio  10 \cdot \lg \ (P_x/P_\varepsilon)=10 \cdot \lg \ (0.19/0.045)= 6.26\ \rm dB.


(9)  What happens if the cutoff frequency  f_{\rm G} = \text{3.5 kHz}  of the rectangular low–pass filter is too large?  In particular, interpret the error signal  \varepsilon(t)=y(t)-x(t).

  •  The error signal  \varepsilon(t)=0.3 \cdot \cos(2\pi \cdot \text{3 kHz} \cdot t +60^\circ)  is now equal to the  \text{3 kHz}  portion of the sink signal  y(t)  not removed by the low-pass filter.
  •  Compared to the subtask  (8)  the frequency changes from  \text{2 kHz}  to  \text{3 kHz}  and also the phase relationship.
  •  The amplitude of this  \text{3 kHz} error signal is equal to the amplitude of the  \text{2 kHz} portion of  x(t).  Again  P_\varepsilon= 0.04510 \cdot \lg \ (P_x/P_\varepsilon)= 6.26\ \rm dB.


(10)  Finally, we consider the  \text {source signal 4}  (portions until  \pm \text{4 kHz}), as well as  f_{\rm A} = \text{5 kHz}f_{\rm G} = \text{2. 5 kHz}0 \le r\le 1.  Interpretation of results.

  •  Up to  r=0.2  the signal reconstruction works perfectly  (P_\varepsilon = 0).  If one increases  r, then  P_\varepsilon  increases continuously and  10 \cdot \lg \ (P_x/P_\varepsilon)  decreases.
  •  With  r=1  the signal frequencies  \text{0.5 kHz},  ...,  \text{4 kHz}  are attenuated, the more the higher the frequency is,  for example  H_{\rm E}(f=\text{4 kHz}) = 0.6.
  •  Similarly,  Y(f)  also includes components at frequencies  \text{6 kHz}\text{7 kHz}\text{8 kHz}\text{9 kHz}  and  \text{9.5 kHz} due to periodic continuation.
  •  At the sampling times  t\hspace{0.05cm}' = n \cdot T_{\rm A}, the signals  x(t\hspace{0.05cm}')  and  y(t\hspace{0.05cm}')  agree exactly  ⇒   \varepsilon(t\hspace{0.05cm}') = 0.  In between, not  ⇒   small distortion power   P_\varepsilon = 0.008.



Applet Manual


Screenshot Korrektur

    (A)     Selection:   Encoding
               (binary,  quaternary,  AMI–code,  duobinary code).

    (B)     Selection:   Detection base pulse
                (by Gaussian–LP,  CRO–Nyquist,  by slit–LP}

    (C)     Parameter input to  (B)
                 (cutoff frequency,  rolloff–factor,  rectangular wave duration)

    (D)     Eye diagram display control
                 (start,  pause/continue,  single step,  total,  reset).

    (E)     Velocity of the eye diagram representation.

    (F)     Representation:  Detection ground momentum  g_d(t)

    (G)     Representation:  detection useful signal  d_{\rm S}(t - \nu \cdot T)

    (H)     Representation:  Eye diagram in the range  \pm T

    ( I )'     Numerical output:  ö_{\rm norm}  (normalized eye opening).

    (J)'     Parameter input  10 \cdot \lg \ E_{\rm B}/N_0  for  (K)

    (K)'     Numeric output:  \sigma_{\rm norm}  (normalized noise rms).

    (L)'     Numeric output:  p_{\rm U}  (worst case error probability)

    (M)'     Range for experimental performance:   Task selection.

    (N)'     Range for the execution of experiments:   Task selection

    (O)'     Range for carrying out the experiment:   Show sample solution

About the Authors

This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2008 by Slim Lamine  as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
  • Last revision and English version 2020/2021 by  Carolin Mirschina  in the context of a working student activity. 


The conversion of this applet to HTML 5 was financially supported by  Studienzuschüsse  ("study grants")  of the TUM Faculty EI.  We thank.


Once again:  Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen