Exercise 2.4: Distortion Factor and Distortion Power

From LNTwww
Revision as of 14:22, 2 February 2017 by Guenter (talk | contribs)

Zur Bedeutung des Klirrfaktors

Zum Test eines Nachrichtenübertragungssystems wird an seinen Eingang ein Cosinussignal $$x_1(t) = A_x \cdot \cos(\omega_0 t)$$

mit der Amplitude $A_x = 1 \ \rm V$ angelegt. Am Systemausgang tritt dann das folgende Signal auf: $$y_1(t) = {0.992 \,\rm V} \cdot \cos(\omega_0 t) - {0.062 \,\rm V} \cdot \cos(2\omega_0 t)+ \hspace{0.05cm}...$$

  • In der oberen Grafik sind die Signale $x_1(t)$ und $y_1(t)$ dargestellt. Oberwellen mit Amplituden kleiner als $10 \ \rm mV$ sind hierbei nicht berücksichtigt.
  • Das untere Bild zeigt das Eingangssignal $x_2(t)$ mit der Ampiltude $A_x = 2 \ \rm V$ sowie das dazugehörige Ausgangssignal, wiederum ohne Oberwellen kleiner als $10 \ \rm mV$:

$$y_2(t) = {1.938 \,\rm V} \cdot \cos(\omega_0 t) - {0.234 \,\rm V} \cdot \cos(2\omega_0 t) + {0.058 \,\rm V} \cdot \cos(3\omega_0 t) -{0.018 \,\rm V} \cdot \cos(4\omega_0 t) + \hspace{0.05cm}...$$

Es ist offensichtlich, dass der Index „1” bzw. „2” jeweils die normierte Amplitude des Eingangssignals kennzeichnet.

Dieses System soll anhand des im Quantitatives Maß für die Signalverzerrungen definierten Signal–zu–Verzerrungs–Leistungsverhältnisses $$\rho_{\rm V} = { P_{x}}/{P_{\rm V}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot \lg \hspace{0.1cm}\rho_{\rm V} = 10 \cdot \lg \hspace{0.1cm}{ P_{x}}/{P_{\rm V}}\hspace{0.3cm} \left( {\rm in \hspace{0.15cm} dB} \right)$$

sowie des Klirrfaktors $K$ analysiert werden:

  • $P_x$ bezeichnet die Leistung des Eingangssignals,
  • die so genannte Verzerrungsleistung $P_{\rm V}$PV gibt jeweils die Leistung (den quadratischen Mittelwert) des Differenzsignals §§\varepsilon(t) = y(t) - x(t)$ an. Zur Bestimmung dieser Leistungen muss jeweils über die quadrierten Signale gemittelt werden. Einfacher ist in dieser Aufgabe jedoch die Leistungsberechnung im Frequenzbereich. ''Hinweise:'' *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]]. *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. *Alle hier abgefragten Leistungen beziehen sich auf den Widerstand $R = 1 \ \rm \Omega$ und haben somit die Einheit ${\rm V}^2$


Fragebogen

1

Berechnen Sie den Klirrfaktor $K$ für die Eingangsamplitude $A_x = 1\ \rm V$.

$A_x = 1\ \rm V$:  $ K \ =$

$\%$

2

WelcherKlirrfaktor ergibt sich mit der Eingangsamplitude $A_x = 2\ \rm V$?

$A_x = 1\ \rm V$:  $ K \ =$

$\%$

3

Welche Aussagen sind für die Signale $x_2(t)$ und $y_2(t)$ zutreffend?

Die untere Halbwelle verläuft spitzförmiger als die obere.
Der Maximal– und Minimalwert von $y_2(t)$ sind unsymmetrisch zu $0$.
Bei anderer Frequenz würde sich ein anderer Klirrfaktor ergeben.

4

Wie groß ist die Leistung $P_x$ des Eingangssignals $x_2(t)$ in ${\rm V}^2$, also umgerechnet auf den Bezugswiderstand $R = 1 \ \rm \Omega$?

$P_x \ =$

$\ {\rm V}^2$

5

Wie groß ist die „Leistung” $P_{\rm V}$ des Differenzsignals $varepsilon_2(t)$? Hinweis: $P_{\rm V}$ wird in diesem Tutorial auch als „Verzerrungsleistung” bezeichnet.

$P_{\rm V} \ =$

$\ {\rm V}^2$

6

Wie groß ist das Signal–zu–Verzerrungs–Leistungsverhältnis in ${\rm dB}$?

$10 \cdot {\ rm lg} \ \rho_{\ rm V} \ = $

$\ {\rm dB}$

7

Welche der folgenden Aussagen treffen bei cosinusförmigem Eingangssignal zu?

Der Klirrfaktor kann allein aus den Koeffizienten $A_1$, $A_2$, $A_3$, ... der Ausgangsgröße berechnet werden.
Das Signal–zu–Verzerrungs–Leistungsverhältnis $10 \cdot {\ rm lg} \ \rho_{\ rm V}$ ist allein aus den Koeffizienten $A_1$, $A_2$, $A_3$, ... der Ausgangsgröße berechenbar.
Für den Sonderfall $A_1 = A_x$  ⇒  keine Veränderung der Grundwelle &nbspkönnen $\rho_{\ rm V}$ und $K$> direkt ineinander umgerechnet werden.


Musterlösung

1.  Mit der Eingangsamplitude Ax = 1 V entsprechend der oberen Skizze liefert nur der Klirrfaktor zweiter Ordnung einen relevanten Beitrag. Deshalb gilt:
$$K \approx K_2 = \frac{0.062 \,\,{\rm V}}{0.992 \,\,{\rm V}} \hspace{0.15cm}\underline{\approx 6.25 \%}.$$
2.  Für die Eingangsamplitude Ax = 2 V (untere Skizze) lauten die verschiedenen Klirrfaktoren:
$$K_2 = \frac{0.234 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.121, \hspace{0.5cm} K_3 = \frac{0.058 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.030, \hspace{0.5cm}K_4 = \frac{0.018 \,\,{\rm V}}{1.938 \,\,{\rm V}} \approx 0.009.$$
Somit lautet der Gesamtklirrfaktor:
$$K = \sqrt{K_2^2 + K_3^2 + K_4^2 + ... }\hspace{0.15cm}\underline{ \approx 12.5 \%}.$$
3.  Hier bewirken die nichtlinearen Verzerrungen, dass die untere Halbwelle spitzförmiger verläuft als die obere. Da zudem y(t) gleichsignalfrei ist, gilt ymax = 1.75 V und ymin = –2.25 V. Die Symmetrie bezüglich der Nulllinie ist somit nicht mehr gegeben.
Bei einem nichtlinearen System ist der Klirrfaktor K unabhängig von der Frequenz des cosinusförmigen Eingangssignals, aber stark abhängig von dessen Amplitude. Richtig sind hier somit die beiden ersten Lösungsvorschläge.
4.  Der Effektivwert eines Cosinussignals ist bekanntlich das „Wurzel aus 0.5”–fache der Amplitude. Das Quadrat hiervon bezeichnet man als die Leistung:
$$P_x = \frac{A_x^2}{2} = \frac{(2 \,{\rm V})^2}{2}\hspace{0.15cm}\underline{ = 2\,{\rm V^2}}.$$
Eigentlich hängt die Leistung ja auch vom Bezugswiderstand R ab und besitzt die Einheit „Watt”. Mit R = 1Ω ergibt sich Px = 2 W, also der geanau gleiche Zahlenwert wie bei dieser einfacheren Berechnung.
5.  Bezeichnet man mit A1 die Amplitude der Grundwelle von y2(t) und mit A2, A3 und A4 die so genannten Oberwellen, so erhält man für die Verzerrungsleistung durch Berechnung im Frequenzbereich:
$$P_{\rm V} = \frac{1}{2} \cdot \left[ (A_1 - A_x)^2 + A_2^2+ A_3^2+ A_4^2\right] = \\ = \frac{1}{2} \cdot \left[ (-2 \,{\rm V} \hspace{-0.05cm}+ \hspace{-0.05cm}1.938 \,{\rm V} )^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (0.234 \,{\rm V})^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (0.058 \,{\rm V})^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (0.018 \,{\rm V})^2 \right] \hspace{0.15cm}\underline{\approx 0.031 \,{\rm V}^2}.$$
Hierbei bezeichnet Ax die Amplitude des Eingangssignals. Die Vorzeichen der Oberwellen spielen bei dieser Berechnung keine Rolle.
6.  Mit den Ergebnissen der Unterpunkte d) und e) erhält man:
$$10 \cdot \lg \rho_{v} = 10 \cdot \lg \frac{P_x}{P_{\rm V}}= 10 \cdot \lg \frac{2.000\,{\rm V^2}}{0.031 \,{\rm V}^2} \hspace{0.15cm}\underline{\approx 18.10 \,{\rm dB}}.$$
7.  Die erste Aussage ist richtig, denn es gilt:
$$K^2 = \frac{A_2^2 + A_3^2 + A_4^2 + ... }{A_1^2}.$$
Dagegen gilt für den Kehrwert des Signal–zu–Verzerrungs–Leistungsverhältnisses:
$$\frac{1}{\rho_{\rm V}} = \frac{(A_1 - A_x)^2+A_2^2 + A_3^2 + A_4^2 + ... }{A_x^2}.$$
Bei der Berechnung der Verzerrungsleistung PV wird auch eine Verfälschung der Grundwellenamplitude (diese ist nun A1 anstelle von Ax) berücksichtigt. Außerdem wird die Verzerrungsleistung nicht auf A1², sondern auf Ax² bezogen. Allgemein gilt zwischen dem Signal–zu–Verzerrungs–Leistungsverhältnis und dem Klirrfaktor folgender Zusammenhang:
$${\rho_{\rm V}} = \frac{A_x^2}{(A_1 - A_x)^2 + K^2 \cdot A_1^2}.$$
Mit A1 = Ax vereinfacht sich diese Gleichung wie folgt:
$${\rho_{\rm V}} = \frac{1}{ K^2 }.$$
Ein Klirrfaktor von 1% entspricht in diesem Fall dem Ergebnis 10 · lg ρν = 40 dB. Mit dem Klirrfaktor K = 0.125 aus Teilaufgabe 2) hätte man mit der Näherung A1Ax sofort 10 · lg ρν = 18.06 dB erhalten. Der unter Punkt f) errechnete tatsächliche Wert (18.10 dB) weicht hiervon nicht all zu sehr ab. Richtig sind somit die Lösungsvorschläge 1 und 3.