Contents
- 1 Kanalmodell nach Gilbert–Elliott (1)
- 2 Kanalmodell nach Gilbert–Elliott (2)
- 3 Fehlerabstandsverteilung des GE–Modells
- 4 Fehlerkorrelationsfunktion des GE–Modells
- 5 Kanalmodell nach McCullough (1)
- 6 Kanalmodell nach McCullough (2)
- 7 Kanalmodell nach McCullough (3)
- 8 Bündelfehlerkanalmodell nach Wilhelm
- 9 Fehlerabstandsbetrachtung zum Wilhelm–Modell (1)
Kanalmodell nach Gilbert–Elliott (1)
Dieses auf E. N. Gilbert Gilbert, E. N.: Capacity of Burst–Noise Channel. In: Bell Syst. Techn. J. Vol. 39, 1960, pp. 1253–1266 und E. O. Elliott Elliott, E.O.: Estimates of Error Rates for Codes on Burst–Noise Channels. In: Bell Syst. Techn. J., Vol. 42, (1963), pp. 1253 – 1266 zurückgehende Kanalmodell eignet sich zur Beschreibung und Simulation von digitalen Übertragungssystemen mit Bündelfehlercharakteristik.
Das Gilbert–Elliott–Modell (Kurzbezeichnung: GE–Modell) lässt sich wie folgt charakterisieren:
- Die unterschiedliche Übertragungsqualität zu unterschiedlichen Zeiten wird durch eine endliche Anzahl g von Kanalzuständen (Z1, Z2, ..., Zg) ausgedrückt.
- Die in Wirklichkeit fließenden Übergänge der Störintensität – im Extremfall von völlig fehlerfreier Übertragung bis hin zum Totalausfall – werden beim GE–Modell durch feste Wahrscheinlichkeiten in den einzelnen Kanalzuständen approximiert.
- Die Übergänge zwischen den g Zuständen erfolgen gemäß einem Markovprozess (1. Ordnung) und werden durch g · (g – 1) Übergangswahrscheinlichkeiten gekennzeichnet. Zusammen mit den g Fehlerwahrscheinlichkeiten in den einzelnen Zuständen gibt es somit g2 freie Modellparameter.
- Aus Gründen der mathematischen Handhabbarkeit beschränkt man sich meist auf g = 2 Zustände und bezeichnet diese mit „G” (GOOD) und „B” (BAD). Meist wird die Fehlerwahrscheinlichkeit im Zustand „G” sehr viel kleiner sein als im Zustand „B”.
- Im Folgenden benutzen wir diese beiden Fehlerwahrscheinlichkeiten pG und pB, wobei pG < pB gelten soll, sowie die Übergangswahrscheinlichkeiten Pr(B|G) und Pr(G|B). Damit sind auch die beiden anderen Übergangswahrscheinlichkeiten festgelegt:
- \[{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} G) = 1 - {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G), \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} B) = 1 - {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{0.05cm}.\]
Kanalmodell nach Gilbert–Elliott (2)
Beispielhaft betrachten wir nun das GE–Modell mit den Parametern
\[p_{\rm G} = 0.01, \hspace{0.2cm}p_{\rm B} = 0.4, \hspace{0.2cm}{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) = 0.1, \hspace{0.2cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.\]
Die nachfolgende Grafik zeigt eine dazugehörige (mögliche) Fehlerfolge der Länge N = 800.
Befindet sich das GE–Modell im Zustand „BAD”, so erkennt man dies an der grauen Hinterlegung. Die Wahrscheinlichkeiten, dass sich die Markovkette im Zustand „G” bzw. „B” befindet, lassen sich aus der vorausgesetzten Homogenität und Stationarität berechnen. Man erhält mit den obigen Zahlenwerten:
\[w_{\rm G} \hspace{-0.15cm} = \hspace{-0.15cm} {\rm Pr(im\hspace{0.15cm} Zustand \hspace{0.15cm}G)}= \frac{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} = \frac{0.1}{0.1 + 0.01} = {10}/{11}\hspace{0.05cm},\] \[w_{\rm B} \hspace{-0.15cm} = \hspace{-0.15cm} {\rm Pr(im\hspace{0.15cm} Zustand \hspace{0.15cm}B)}= \frac{{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} = \frac{0.11}{0.1 + 0.01} = {1}/{11}\hspace{0.05cm}.\]
Damit kann auch die mittlere Fehlerwahrscheinlichkeit des GE–Modells ermittelt werden:
\[p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B} = \frac{p_{\rm G} \cdot {\rm Pr}({\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}+ p_{\rm B} \cdot {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} \hspace{0.05cm}.\]
Insbesondere gilt für das hier beispielhaft betrachtete Modell:
\[p_{\rm M} ={10}/{11} \cdot 0.01 +{1}/{11} \cdot 0.4 = {1}/{22} \approx 4.55\%\hspace{0.05cm}.\]
Zur Simulation einer GE–Fehlerfolge wird zwischen den Zuständen „G” und „B” entsprechend den vier Übergangswahrscheinlichkeiten umgeschaltet. Beim ersten Aufruf erfolgt die Auswahl des Zustandes zweckmäßigerweise entsprechend den Wahrscheinlichkeiten wG und wB.
Zu jedem Taktzeitpunkt wird genau ein Element der Fehlerfolge 〈eν〉 entsprechend der aktuellen Fehlerwahrscheinlichkeit (pG bzw. pB) erzeugt. Die Simulation des Fehlerabstandes ist hier nicht anwendbar, da ein Zustandswechsel nach jedem Symbol (und nicht nur nach einem Fehler) möglich ist.
Fehlerabstandsverteilung des GE–Modells
In Huber, J.: Codierung für gedächtnisbehaftete Kanäle. Dissertation – Universität der Bundeswehr München, 1982 finden sich die analytischen Berechnungen
- der Wahrscheinlichkeit des Fehlerabstandes k:
- \[{\rm Pr}(a=k) = \alpha_{\rm G} \cdot \beta_{\rm G}^{\hspace{0.05cm}k-1} \cdot (1- \beta_{\rm G}) + \alpha_{\rm B} \cdot \beta_{\rm B}^{\hspace{0.05cm}k-1} \cdot (1- \beta_{\rm B})\hspace{0.05cm},\]
- der Fehlerabstandsverteilung:
- \[V_a(k) = {\rm Pr}(a \ge k) = \alpha_{\rm G} \cdot \beta_{\rm G}^{\hspace{0.05cm}k-1} + \alpha_{\rm B} \cdot \beta_{\rm B}^{\hspace{0.05cm}k-1} \hspace{0.05cm}.\]
Hierbei sind folgende Hilfsgrößen verwendet:
\[u_{\rm GG} \hspace{-0.1cm} = \hspace{-0.1cm}{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\rm G}) \hspace{0.05cm},\hspace{0.2cm} {\it u}_{\rm GB} ={\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\hspace{0.03cm} \rm G}) \hspace{0.05cm},\] \[u_{\rm BB} \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\hspace{0.03cm}\rm B}) \hspace{0.05cm},\hspace{0.29cm} {\it u}_{\rm BG} ={\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\hspace{0.03cm}\rm B})\hspace{0.05cm}\]
\[\Rightarrow \hspace{0.3cm} \beta_{\rm G} \hspace{-0.1cm} = \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} + \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2} \hspace{0.05cm},\] \[\hspace{0.8cm}\beta_{\rm B} \hspace{-0.1cm} = \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} - \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2}\hspace{0.05cm}.\]
\[x_{\rm G} =\frac{u_{\rm BG}}{\beta_{\rm G}-u_{\rm BB}} \hspace{0.05cm},\hspace{0.2cm} x_{\rm B} =\frac{u_{\rm BG}}{\beta_{\rm B}-u_{\rm BB}}\]
\[\Rightarrow \hspace{0.3cm} \alpha_{\rm G} = \frac{(w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}\cdot x_{\rm G})( x_{\rm B}-1)}{p_{\rm M} \cdot( x_{\rm B}-x_{\rm G})} \hspace{0.05cm}, \hspace{0.2cm}\alpha_{\rm B} = 1-\alpha_{\rm G}\hspace{0.05cm}.\]
Die angegebenen Gleichungen sind das Ergebnis umfangreicher Matrizenoperationen.
- Die Abbildung zeigt die Fehlerabstandsverteilung (FAV) des GE–Modells (rote Kurve) in linearer und logarithmischer Darstellung für Pr(G|B) = 0.1, Pr(B|G) = 0.01, pG = 0.001 und pB = 0.4.
- Zum Vergleich ist auch der Verlauf von Va(k) für das BSC–Modell mit der gleichen mittleren Fehlerwahrscheinlichkeit pM = 4.5% als blaue Kurve eingezeichnet.
Fehlerkorrelationsfunktion des GE–Modells
Für die Fehlerkorrelationsfunktion (FKF) ergibt sich mit der mittleren Fehlerwahrscheinlichkeit pM, den Übergangswahrscheinlichkeiten Pr(B|G) und Pr(G|B) sowie den Fehlerwahrscheinlichkeiten pG und pB in den zwei Zuständen „G” und „B” nach umfangreichen Matrizenoperationen der relativ einfache Ausdruck
\[\varphi_{e}(k) = \left\{ \begin{array}{c} p_{\rm M} \\ p_{\rm M}^2 + (p_{\rm B} - p_{\rm M}) (p_{\rm M} - p_{\rm G}) [1 - {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )- {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )]^k \end{array} \right.\quad \begin{array}{*{1}c} f{\rm \ddot{u}r }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm \ddot{u}r }\hspace{0.15cm} k > 0 \hspace{0.05cm}.\\ \end{array}\]
Der nur für „erneuernde Modelle” gültige Zusammenhang zwischen FKF und FAV ist hier nicht gegeben (GE–Modell ist nicht erneuernd!) ⇒ Zur Berechnung unbedingt φe(k) = E[eν · eν+k] verwenden.
In der Grafik ist ein beispielhafter FKF–Verlauf des GE–Modells mit roten Kreisen markiert eingetragen. Während beim gedächtnislosen Kanal (BSC–Modell, blaue Kurve) alle FKF–Werte φe(k ≠ 0) gleich pM2 sind, nähern sich die FKF–Werte beim Bündelfehlerkanal diesem Endwert deutlich langsamer.
Weiter erkennt man aus dieser Darstellung:
- Beim Übergang von k = 0 nach k = 1 tritt eine gewisse Unstetigkeit auf. Während φe(k = 0) = pM ist, ergibt sich mit der für k > 0 gültigen zweiten Gleichung für k = 0 folgender extrapolierter Wert:
- \[\varphi_{e0} = p_{\rm M}^2 + (p_{\rm B} - p_{\rm M}) \cdot (p_{\rm M} - p_{\rm G})\hspace{0.05cm}.\]
- Ein quantitatives Maß für die Länge der statistischen Bindungen ist die Korrelationsdauer DK, die allgemein als die Breite eines flächengleichen Rechtecks mit der Höhe φe0 – pM2 definiert ist:
- \[D_{\rm K} = \frac{1}{\varphi_{e0} - p_{\rm M}^2} \cdot \sum_{k = 1 }^{\infty}\hspace{0.1cm} [\varphi_{e}(k) - p_{\rm M}^2]\hspace{0.05cm}.\]
- Beim Gilbert–Elliott–Modell erhält man hierfür den einfachen, analytisch angebbaren Ausdruck
- \[D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1 \hspace{0.05cm}.\]
- DK ist umso größer, je kleiner Pr(B|G) und Pr(G|B) sind (also Zustandswechsel selten auftreten). Für das BSC–Modell (pB = pG = pM, DK = 0) ist die Gleichung nicht anwendbar.
Kanalmodell nach McCullough (1)
Der wesentliche Nachteil des GE–Modells ist, dass damit eine Fehlerabstandssimulation nicht möglich ist. Wie in der Aufgabe A5.5 herausgearbeitet wurde, hat diese gegenüber der symbolweisen Generierung der Fehlerfolge 〈eν〉 große Vorteile hinsichtlich Rechengeschwindigkeit und Speicherbedarf.
McCullough McCullough, R.H.: The Binary Regenerative Channel. In: Bell Syst. Techn. J. (47), 1968 hat das drei Jahre zuvor von Gilbert und Elliott entwickelte Modell dahingehend modifiziert, dass eine Fehlerabstandssimulation in den beiden Zustände „GOOD” und „BAD” jeweils für sich anwendbar ist. Die Grafik zeigt unten das Modell von McCullough, im Folgenden als MC–Modell bezeichnet, während oben das GE–Modell nach Umbenennung der Übergangswahrscheinlichkeiten ⇒ p(B|G) = Pr(B|G), p(G|B) = Pr(G|B) usw. dargestellt ist.
Zwischen den beiden Modellen bestehen viele Gemeinsamkeiten und einige wenige Unterschiede:
- Das McCullough–Kanalmodell beruht wie das Gilbert–Elliott–Modell auf einem Markovprozess erster Ordnung mit den beiden Zuständen „G” (GOOD) und „B” (BAD). Hinsichtlich der Modellstruktur ist kein Unterschied feststellbar.
- Der wesentliche Unterschied zum GE–Modell besteht darin, dass ein Zustandswechsel zwischen „G” und „B” jeweils nur nach einem Fehler – also einer „1” in der Fehlerfolge – möglich ist. Dies ermöglicht eine Fehlerabstandssimulation.
- Die vier frei wählbaren GE–Parameter pG, pB, p(B|G) und p(G|B) können – wie auf der nächsten Seite gezeigt – so in die MC–Parameter qG, qB, q(B|G) und q(G|B) umgerechnet werden, dass eine in ihren statistischen Eigenschaften gleiche Fehlerfolge wie beim GE–Modell erzeugt wird.
- Beispielsweise bezeichnet q(B|G) die Übergangswahrscheinlichkeit von dem Zustand „G” in den Zustand „B” unter der Voraussetzung, dass im Zustand „G” gerade ein Fehler aufgetreten ist. Der GE–Parameter p(B|G) kennzeichnet diese Übergangswahrscheinlichkeit ohne Zusatzbedingung.
Kanalmodell nach McCullough (2)
Die Abbildung zeigt oben eine beispielhafte Fehlerfolge des GE–Modells mit den Parametern pG = 0.01, pB = 0.4, p(G|B) = 0.1 und p(B|G) = 0.01. Man erkennt, dass ein Zustandswechsel von „G” (ohne Hinterlegung) nach „B” (graue Hinterlegung) und umgekehrt zu jedem Zeitpunkt ν möglich ist – also auch dann, wenn eν gleich 0 ist.
Die Zusammenhänge zwischen den beiden Modellen lassen sich wie folgt zusammenfassen:
- Bei der unten dargestellten Fehlerfolge des McCullough–Modells ist im Gegensatz zur oberen Folge ein Zustandswechsel zum Zeitpunkt ν nur bei eν = 1 möglich.
- Dies hat den Vorteil, dass man bei einer Fehlerfolgensimulation die Fehler nicht „step–by–step” generieren muss, sondern die schnellere Fehlerabstandssimulation nutzen kann ⇒ Aufgabe A5.5.
- Die Parameter des GE–Modells können derart in entsprechende MC–Parameter umgerechnet werden, dass beide Modellen äquivalent sind.
- Das bedeutet, dass die MC–Fehlerfolge exakt gleiche statistische Eigenschaften besitzt wie die GE–Fehlerfolge. Es bedeutet aber nicht, dass die beiden Fehlerfolgen identisch sind.
Die Umrechnung der GE– in die MC–Parameter wird auf der nächsten Seite beschrieben und in der Aufgabe A5.7 an einem einfachen Beispiel verdeutlicht. In der Aufgabe Z5.7 wird weiter gezeigt, wie die mittlere Fehlerwahrscheinlichkeit, die Fehlerabstandsverteilung, die Fehlerkorrelationsfunktion und die Korrelationsdauer des MC–Modells direkt aus den q–Parametern ermittelt werden können.
Kanalmodell nach McCullough (3)
Die Parameter des äquivalenten MC–Modells sind aus den GE–Parametern wie folgt berechenbar:
\[q_{\rm G} =1-\beta_{\rm G}\hspace{0.05cm}, \hspace{0.2cm}q_{\rm B} = 1-\beta_{\rm B}\hspace{0.05cm}.\]
\[q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) =\frac{\alpha_{\rm B} \cdot[{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )]}{\alpha_{\rm G} \cdot q_{\rm B} + \alpha_{\rm B} \cdot q_{\rm G}} \hspace{0.05cm}, \hspace{0.5cm} q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) = \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.\]
Hierbei sind wieder die folgenden Hilfsgrößen verwendet:
\[u_{\rm GG} \hspace{-0.1cm} = \hspace{-0.1cm}{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\rm G}) \hspace{0.05cm},\hspace{0.2cm} {\it u}_{\rm GB} ={\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) \cdot (1-{\it p}_{\hspace{0.03cm} \rm G}) \hspace{0.05cm},\] \[u_{\rm BB} \hspace{-0.1cm} = \hspace{-0.1cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\hspace{0.03cm}\rm B}) \hspace{0.05cm},\hspace{0.29cm} {\it u}_{\rm BG} ={\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) \cdot (1-{\it p}_{\hspace{0.03cm}\rm B})\hspace{0.05cm}\]
\[\Rightarrow \hspace{0.3cm} \beta_{\rm G} \hspace{-0.1cm} = \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} + \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2} \hspace{0.05cm},\] \[\hspace{0.7cm}\beta_{\rm B} \hspace{-0.1cm} = \hspace{-0.1cm}\frac{u_{\rm GG} + u_{\rm BB} - \sqrt{(u_{\rm GG} - u_{\rm BB})^2 + 4 \cdot u_{\rm GB}\cdot u_{\rm BG}}}{2}\hspace{0.05cm}.\]
\[x_{\rm G} =\frac{u_{\rm BG}}{\beta_{\rm G}-u_{\rm BB}} \hspace{0.05cm},\hspace{0.2cm} x_{\rm B} =\frac{u_{\rm BG}}{\beta_{\rm B}-u_{\rm BB}}\]
\[\Rightarrow \hspace{0.3cm} \alpha_{\rm G} = \frac{(w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}\cdot x_{\rm G})( x_{\rm B}-1)}{p_{\rm M} \cdot( x_{\rm B}-x_{\rm G})} \hspace{0.05cm}, \hspace{0.2cm}\alpha_{\rm B} = 1-\alpha_{\rm G}\hspace{0.05cm}.\]
- GE–Parameter: pG = 0.01, pB = 0.4, p(G|B) = 0.1 und p(B|G) = 0.01.
- MC–Parameter: qG = 0.0186, qB = 0.4613, q(G|B) = 0.2240 und q(B|G) = 0.3602.
Bündelfehlerkanalmodell nach Wilhelm
Dieses Modell geht auf Claus Wilhelm zurück und wurde ab Mitte der 1960er Jahre aus empirischen Messungen zeitlicher Folgen von Bitfehlern entwickelt. Es beruht auf Tausenden von Messstunden in Übertragungskanälen ab 200 bit/s mit analogem Modem bis hin zu 2.048 Mbit/s über ISDN. Ebenso wurden Seefunkkanäle bis zu 7500 Kilometern im Kurzwellenbereich vermessen.
Aufgezeichnet wurden Blöcke der Länge n. Daraus wurde die jeweilige Blockfehlerrate hB(n) ermittelt. Ein Blockfehler liegt bereits dann vor, wenn auch nur eines der n Symbole verfälscht wurde. Wohl wissend, dass die Blockfehlerrate hB nur für n → ∞ exakt mit der Blockfehlerwahrscheinlichkeit pB übereinstimmt, setzen wir bei der folgenden Beschreibung pB(n) ≈ hB(n).
Bei einer Vielzahl von Messungen wurde immer wieder die Tatsache bestätigt, dass der Verlauf pB(n) in doppelt–logarithmischer Darstellung im unteren Bereich lineare Anstiege aufweisen (siehe Grafik). Es gilt also für n ≤ n∗:
\[{\rm lg} \hspace{0.1cm}p_{\rm B}(n) = {\rm lg} \hspace{0.1cm}p_{\rm S} + \alpha \cdot {\rm lg} \hspace{0.1cm}n\]
\[\Rightarrow \hspace{0.3cm} p_{\rm B}(n) = p_{\rm S} \cdot n^{\alpha}\hspace{0.05cm}.\]
Hierbei bezeichnet pS = pB(n = 1) die mittlere Symbolfehlerwahrscheinlichkeit und die empirisch gefundenen Werte von α liegen zwischen 0.5 und 0.95. Für 1 – α wird auch die Bezeichnung Bündelungsfaktor verwendet.
\[p_{\rm B}(n) =1 -(1 -p_{\rm S})^n \approx n \cdot p_{\rm S}\hspace{0.05cm}.\]
Daraus folgt α = 1 bzw. der Bündelungsfaktor 1 – α = 0. In diesem Fall (und nur in diesem) ergibt sich auch bei nicht–logarithmischer Darstellung ein linearer Verlauf.
Für die aus Messungen empirisch bestimmte Funktion pB(n) muss nun die Fehlerabstandsverteilung gefunden werden, aus der der Verlauf für n > n∗ extrapoliert werden kann und der die Nebenbedingung
\[\lim_{n \hspace{0.05cm} \rightarrow \hspace{0.05cm} \infty} p_{\rm B}(n) = 1 \]
erfüllt. Wir bezeichnen diesen Ansatz als das Wilhelm–Modell. Da das Gedächtnis nur bis zum letzten Symbolfehler reicht, wird dieses ein Erneuerungsmodell (englisch: Renewal Model) sein.
Fehlerabstandsbetrachtung zum Wilhelm–Modell (1)
Betrachten wir nun die Fehlerabstände. Eine Fehlerfolge 〈eν〉 kann in äquivalenter Weise durch die Fehlerabstandsfolge 〈aν'〉 dargestellt werden, wie in der folgenden Grafik gezeigt. Man erkennt:
- Die Fehlerfolge ...1001... wird durch den Fehlerabstand a = 3 ausgedrückt.
- Entsprechend bezeichnet der Fehlerabstand a = 1 die Fehlerfolge ...11... .
- Die verschiedenen Indizes ν und ν' berücksichtigen, dass die beiden Folgen nicht synchron laufen.
Mit den Wahrscheinlichkeiten pa(k) = Pr(a = k) für die einzelnen Fehlerabstände k und der mittleren (Bit–)Fehlerwahrscheinlichkeit pS gelten folgende Definitionen für
- die Fehlerabstandsverteilung (FAV): den mittleren Fehlerabstand E[a]:
- \[ V_a(k) = {\rm Pr}(a \ge k)= \sum_{\kappa = k}^{\infty}p_a(\kappa) \hspace{0.05cm}, \hspace{0.93cm} {\rm E}[a] = \sum_{k = 1}^{\infty} k \cdot p_a(k) = {1}/{p_{\rm S}}\hspace{0.05cm}.\]
Wir betrachten nun einen Block mit n Bit, beginnend bei der Bitposition ν + 1. Ein Blockfehler tritt immer dann auf, wenn ein Bit an den Positionen ν + 1, ... , ν + n verfälscht ist.
Die Verfälschungswahrscheinlichkeiten werden in der Grafik durch die Fehlerabstandsverteilung Va'(k) ausgedrückt. Irgendwo vor dem Block der Länge n = 3
befindet sich der letzte Fehler, aber mindestens im Abstand k vom ersten Fehler im Block entfernt. Also ist der Abstand gleich oder größer als k, was genau der Wahrscheinlichkeit Va'(k) entspricht.
Hinweis. Das Hochkomma soll anzeigen, dass wir später noch eine Korrektur vornehmen müssen, um von der empirisch gefundenen FAV zur richtigen Funktion Va(k) zu kommen.
Für die Blockfehlerwahrscheinlichkeit haben wir nun zwei Gleichungen: Durch Verallgemeinerung des obigen Bildes ergibt sich Gleichung (1). Die zweite Gleichung liefert unsere empirische Untersuchung:
\[(1)\hspace{0.2cm} p_{\rm B}(n) = p_{\rm S} \cdot \sum_{k = 1}^{n} V_a\hspace{0.05cm}'(k) \hspace{0.05cm}, \hspace{0.4cm}(2)\hspace{0.2cm} p_{\rm B}(n) = p_{\rm S} \cdot n^{\alpha} \hspace{0.4cm}\Rightarrow\hspace{0.4cm} \sum_{k = 1}^{n} V_a\hspace{0.05cm}'(k) = n^{\alpha} \hspace{0.05cm}. \]