Exercise 3.5: PM and FM for Rectangular Signals

From LNTwww
Revision as of 14:26, 3 January 2017 by Safwen (talk | contribs)

P ID1099 Mod A 3 5.png

Wir gehen von einem bipolaren und rechteckförmigen Quellensignal $q(t)$ aus, welches im oberen Diagramm dargestellt ist.

Dieses kann nur die beiden Signalwerte $±A = ±2 V$ annehmen und die Dauer der positiven und negativen Rechtecke ist jeweils $T = 1 ms$. Die Periodendauer von $q(t)$ ist demzufolge $T_0 = 2 ms$.

Die Signale $s_1(t)$ und $s_2(t)$ zeigen zwei Sendesignale bei Winkelmodulation (WM), die jeweils in der Form $$s(t) = A_{\rm T} \cdot \cos (\psi (t) )$$ darstellbar sind. Hierbei unterscheidet man zwischen der Phasenmodulation (PM) mit der Winkelfunktion $$\psi(t) = \omega_{\rm T} \cdot t + \phi(t)$$ $$ = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot q(t)$$ und der Frequenzmodulation (FM), bei der die Augenblicksfrequenz linear mit $q(t)$ zusammenhängt: $$f_{\rm A}(t) = \frac{\omega_{\rm A}(t)}{2\pi}, \hspace{0.3cm} \omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm FM} \cdot q(t)\hspace{0.05cm}.$$ $K_{PM}$ und $K_{FM}$ bezeichnen dimensionsbehaftete, durch die Realisierung des PM– bzw. FM–Modulators vorgegebene Konstante. Der Frequenzhub $Δf_A$ gibt die maximale Abweichung der Augenblicksfrequenz von der Trägerfrequenz an.

Hinweis: Die Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 3.1 und Kapitel 3.2. Im Vorgriff auf das Kapitel 4 sei erwähnt, dass man die Phasenmodulation bei digitalem Eingangssignal auch als PSK (Phase Shift Keying) und entsprechend die Frequenzmodulation als FSK (Frequency Shift Keying) bezeichnet.

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.