Exercise 5.7Z: Application of the IDFT
Bei der Diskreten Fouriertransformation (DFT) werden aus den Zeitabtastwerten $d(ν)$ mit der Laufvariablen ν = 0, ... , N – 1 die diskreten Spektralkoeffizienten D(μ) mit μ = 0, ... , N – 1 wie folgt berechnet: $$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ Hierbei ist mit w der komplexe Drehfaktor abgekürzt, der wie folgt definiert ist: $$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$ Entsprechend gilt für die Inverse Diskrete Fouriertransformation (IDFT) als Umkehrfunktion der DFT: $$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$ In dieser Aufgabe sollen für verschiedene komplexwertige Beispielfolgen $D(μ)$ – die in der Tabelle mit „A”, „B” und „C” bezeichnet sind – die Zeitkoeffizienten d(ν) ermittelt werden. Es gilt somit stets N = 8.
Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 5.6 dieses Buches und auf das Kapitel 5.2 des Buches „Signaldarstellung”. Wir verweisen auch auf das Interaktionsmodul
Diskrete Fouriertransformation
Fragebogen
Musterlösung
2. Hier sind alle Spektralkoeffizienten 0 mit Ausnahme von $D_1 = 1 – j$ und $D_7 = 1 + j$. Daraus folgt für alle Zeitkoeffizienten (0 ≤ ν ≤ 7): $$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {7\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}.$$ Aufgrund der Periodizität gilt aber auch: $$d(\nu) = (1 - {\rm j}) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} +(1 + {\rm j}) \cdot {\rm{e}}^{ +{\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}=$$ $$ = \left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} + {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right]+ {\rm{j}} \cdot\left[ {\rm{e}}^{ + {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu} - {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\nu}\right].$$ Mit dem Satz von Euler lässt sich dieser Ausdruck wie folgt umformen: $$d(\nu) = 2 \cdot \cos \left( \frac {\pi}{4}\cdot \nu \right)+ 2 \cdot \sin \left( \frac {\pi}{4}\cdot \nu \right).$$ Diese Zeitfunktion d(ν) ist rein reell und kennzeichnet eine harmonische Schwingung mit der Amplitude 2 mal „Wurzel aus 2” und der Phase φ = 45°. Der Zeitkoeffizient mit ν = 1 gibt das Maximum an: $$ {\rm Re}[d(1)] = 2 \cdot \frac {\sqrt{2}}{2}+ 2 \cdot \frac {\sqrt{2}}{2} = 2 \cdot {\sqrt{2}} \hspace{0.15cm}\underline {\approx 2.828}, \hspace{0.5cm}{\rm Im}[d(1)] \hspace{0.15cm}\underline {= 0}.$$
3. Entsprechend der allgemeinen Gleichung gilt: $$d(1) = \sum\limits_{\mu = 0}^{7} D(\mu)\cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}/4\hspace{0.04cm}\cdot \hspace{0.04cm}\mu} =$$ $$ = \left[ D(1) + D(7) \right]\cdot \cos \left( {\pi}/{4} \right) + \left[ D(3) + D(5) \right]\cdot \cos \left( {3\pi}/{4} \right)+$$ $$ + {\rm j} \cdot \left[ D(2) - D(6) \right]\cdot \sin \left( {\pi}/{2} \right) + D(4) \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.04cm}\cdot \hspace{0.04cm} {\rm{\pi}}}.$$ Die ersten drei Terme liefern rein reelle Ergebnisse: $${\rm Re}\{d(1)\} = (1+1) \cdot \frac{1}{\sqrt{2}}-(3+3) \cdot \frac{1}{\sqrt{2}}+ {\rm j} \cdot4{\rm j} \cdot 1 =$$ $$ = -\frac{4}{\sqrt{2}}-4\hspace{0.15cm}\underline { \approx -6.829}.$$ Für den Imaginärteil ergibt sich: $${\rm Im}\{d(1)\} = {\rm Im}\left\{4 \cdot{\rm j} \cdot (-1) \right\} \hspace{0.15cm}\underline {= -4}.$$