Contents
Prinzip und Motivation
Die meisten Quellensignale von Nachrichtensystemen sind analog und damit zeitkontinuierlich und gleichzeitig wertkontinuierlich. Soll ein solches Analogsignal mittels eines Digitalsystems übertragen werden, so sind folgende Vorverarbeitungsschritte erforderlich:
- die Abtastung des zeitkontinuierlichen Nachrichtensignals $x(t)$, die zweckmäßigerweise – aber nicht notwendigerweise – zu äquidistanten Zeitpunkten erfolgt ⇒ Zeitdiskretisierung,
- die Quantisierung mit dem Ziel, die wertkontinuierlichen Abtastwerte zu diskretisieren und so die Anzahl $M$ der möglichen Werte auf einen endlichen Wert zu begrenzen ⇒ Wertdiskretisierung.
Die Quantisierung wird erst im Kapitel Pulscodemodulation des Buches „Modulationsverfahren” behandelt.
Im Folgenden beschreiben wir die Abtastung in mathematisch exakter Weise, wobei wir folgende Nomenklatur verwenden:
- Das zeitkontinuierliche Signal sei $x(t)$.
- Das in äquidistanten Abständen $T_{\rm A}$abgetastete zeitdiskretisierte Signal sei $x_{\rm A}(t)$.
- Außerhalb der Abtastzeitpunkte $\nu \cdot T_{\rm A}$ gilt stets $x_{\rm A}(t) = 0$.
- Die Laufvariable $\nu$ sei ganzzahlig: $\nu \in \mathbb{Z} = \{... , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, ...\} $.
- Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten $K$:
- $$x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.$$
Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt $K = 1$.
Zeitbereichsdarstellung
Im gesamten Lerntutorial soll unter Abtastung die Multiplikation des zeitkontinuierlichen Signals $x(t)$ mit dem Diracpuls $p_{\delta}(t)$ verstanden werden:
$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.$$
Anzumerken ist, dass in der Literatur auch andere Beschreibungsformen gefunden werden. Den Autoren erscheint jedoch die hier gewählte Form im Hinblick auf die Spektraldarstellung und die Herleitung der Diskreten Fouriertransformation (DFT) als am besten geeignet.
Der Diracpuls (im Zeitbereich) besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand $T_{\rm A}$ und alle mit gleichem Impulsgewicht $T_{\rm A}$:
$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$
Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:
- Das abgetastete Signal zum betrachteten Zeitpunkt ($\nu \cdot T_{\rm A}$) ist gleich $T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0)$.
- Da die Diracfunktion zur Zeit $t = 0$ unendlich ist, sind eigentlich alle Signalwerte $x_{\rm A}(\nu \cdot T_{\rm A})$ ebenfalls unendlich groß.
- Somit ist auch der auf der letzten Seite eingeführte Faktor $K$ eigentlich unendlich groß.
- Trotzdem unterscheiden sich zwei Abtastwerte – beispielsweise $x_{\rm A}(\nu_1 \cdot T_{\rm A})$ und $x_{\rm A}(\nu_2 \cdot T_{\rm A})$ – im gleichen Verhältnis wie die Signalwerte $x(\nu_1 \cdot T_{\rm A})$ und $x(\nu_2 \cdot T_{\rm A})$.
- Die Abtastwerte von $x(t)$ erscheinen in den Impulsgewichten der Diracfunktionen:
- $$x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$
- Die zusätzliche Multiplikation mit $T_{\rm A}$ ist erforderlich, damit $x(t)$ und $x_{\rm A}(t)$ gleiche Einheit besitzen. Beachten Sie hierbei, dass $\delta (t)$ selbst die Einheit „1/s” aufweist.
Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent und richtig anwendet.
Diracpuls im Zeit- und im Frequenzbereich
Entwickelt man den Diracpuls in eine Fourierreihe und transformiert diese unter Anwendung des Verschiebungssatzes in den Frequenzbereich, so ergibt sich folgende Korrespondenz:
$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ).$$
Hierbei gibt $f_{\rm A} = 1/T_{\rm A}$ den Abstand zweier benachbarter Diraclinien im Frequenzbereich an.
Die Herleitung der hier angegebenen Spektralfunktion $P_{\delta}(f)$ geschieht in mehreren Schritten:
(1) Da $p_{\delta}(t)$ periodisch mit dem konstanten Abstand $T_A$ zwischen zwei Diraclinien ist, kann die (komplexe) Fourierreihendarstellung angewendet werden:
- $$p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A}} \hspace{0.3cm}{\rm mit}\hspace{0.3cm} D_{\mu} = \frac{1}{T_{\rm A}} \cdot \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}p_{\delta}(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A}}\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
(2) Im Integrationsbereich von $–T_{\rm A}/2$ bis $+T_{\rm A}/2$ gilt aber für den Diracpuls im Zeitbereich: $p_{\delta}(t) = T_{\rm A} \cdot \delta(t)$. Damit kann für die komplexen Fourierkoeffizienten geschrieben werden:
- $$D_{\mu} = \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A}}\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.$$
(3) Unter Berücksichtigung der Tatsache, dass für $t \neq 0$ der Diracimpuls gleich $0$ ist und für $t = 0$ der komplexe Drehfaktor gleich $1$, gilt weiter:
- $$D_{\mu} = \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm} p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} {\rm e}^{{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A}}\hspace{0.05cm}.$$
(4) Der Verschiebungssatz im Frequenzbereich lautet mit $f_{\rm A} = 1/T_{\rm A}$: $${\rm e}^{{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm} f_{\rm A}\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$ (5) Wendet man das Ergebnis auf jeden einzelnen Summanden an, so erhält man schließlich:
- $$P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$
Das Ergebnis besagt:
- Der Diracpuls $p_{\delta}(t)$ im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand $T_{\rm A}$ und alle mit gleichem Impulsgewicht $T_{\rm A}$.
- Die Fouriertransformierte von $p_{\delta}(t)$ ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich ⇒ $P_{\delta}(f)$.
- $P_{\delta}(f)$ besteht ebenfalls aus unendlich vielen Diracimpulsen, nun aber im jeweiligen Abstand $f_{\rm A} = 1/T_{\rm A}$ und alle mit dem Impulsgewicht $1$.
- Die Abstände der Diraclinien in der Zeit– und Frequenzbereichsdarstellung folgen demnach dem Reziprozitätsgesetz: $T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.$
Die Grafik verdeutlicht die obigen Aussagen für $T_{\rm A} = 50\,\text{μs}$ und $f_{\rm A} = 1/T_{\rm A} = 20\,\text{kHz}$ .
Man erkennt aus dieser Skizze auch die unterschiedlichen Impulsgewichte von $p_{\delta}(t)$ und $P_{\delta}(f)$.
Frequenzbereichsdarstellung
Zum Spektrum von $x_{\rm A}(t)$ kommt man durch Anwendung des Faltungssatzes. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltungsoperation im Spektralbereich entspricht:
$$x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.$$
Aus dem Spektrum $X(f)$ wird durch Faltung mit der um $\mu \cdot f_{\rm A}$ verschobenen Diraclinie:
$$X(f) \star \delta (f- \mu \cdot f_{\rm A} )= X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$
Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:
$$X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.$$
Das heißt: Die Abtastung des analogen Zeitsignals $x(t)$ in äquidistanten Abständen $T_{\rm A}$ führt im Spektralbereich zu einer periodischen Fortsetzung von $X(f)$ mit dem Frequenzabstand $f_{\rm A} = 1/T_{\rm A}$.
Die obere Grafik zeigt schematisch das Spektrum $X(f)$ eines analogen Signals $x(t)$, das Frequenzen bis 5 kHz beinhaltet.
Tastet man das Signal mit der Abtastrate $f_{\rm A}\,\text{ = 20 kHz}$, also im jeweiligen Abstand $T_{\rm A}\,\text{ = 50 μs}$ ab, so erhält man das unten skizzierte periodische Spektrum $X_{\rm A}(f)$. Da die Diracfunktionen unendlich schmal sind, beinhaltet $x_{\rm A}(t)$ auch beliebig hochfrequente Anteile. Dementsprechend ist die Spektralfunktion $X_{\rm A}(f)$ des abgetasteten Signals bis ins Unendliche ausgedehnt.
Signalrekonstruktion
Die Signalabtastung ist bei einem digitalen Nachrichtenübertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden. Betrachten wir zum Beispiel das folgende System:
Das Analogsignal $x(t)$ mit Bandbreite $B_{\rm NF}$ wird wie oben beschrieben abgetastet. Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal $y_{\rm A}(t) = x_{\rm A}(t)$ vor. Die Frage ist nun, wie der Block Signalrekonstruktion zu gestalten ist, damit auch $y(t) = x(t)$ gilt.
Die Lösung ist relativ einfach, wenn man die Spektralfunktionen betrachtet. Man erhält aus $Y_{\rm A}(f)$ das Spektrum $Y(f) = X(f)$ durch einen Tiefpass mit dem Frequenzgang $H(f)$, der
- die tiefen Frequenzen unverfälscht durchlässt:
- $$H(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm NF}\hspace{0.05cm},$$
- die hohen Frequenzen vollständig unterdrückt:
- $$H(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm NF}\hspace{0.05cm}.$$
Weiter ist aus der Grafik zu erkennen, dass der Frequenzgang $H(f)$ im Bereich von $B_{\rm NF}$ bis $f_{\rm A}–B_{\rm NF}$ beliebig geformt sein kann, beispielsweise linear abfallend (gestrichelter Verlauf) oder auch rechteckförmig, solange die zwei oben genannten Bedingungen erfüllt sind.
Das Abtasttheorem
Die vollständige Rekonstruktion des Analogsignals $y(t)$ aus dem abgetasteten Signal $y_A(t) = x_A(t)$ ist nur möglich, wenn die Abtastrate $f_A$ entsprechend der Bandbreite $B_{NF}$ des Nachrichtensignals richtig gewählt wurde. Aus der Grafik der letzten Seite erkennt man, dass folgende Bedingung erfüllt sein muss:
$$f_{\rm A} - B_{\rm NF} > B_{\rm NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm NF}\hspace{0.05cm}.$$
Abtasttheorem: Besitzt ein Analogsignal $x(t)$ nur Spektralanteile im Bereich $|f| < B_{NF}$, so kann dieses aus seinem abgetasteten Signal nur dann vollständig rekonstruiert werden, wenn die Abtastrate $f_A ≥ 2 \cdot B_{NF}$ beträgt. Für den Abstand zweier Abtastwerte muss demnach gelten:
$$T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm NF}}\hspace{0.05cm}.$$
Wird bei der Abtastung der größtmögliche Wert ⇒ $T_A = 1/(2B_{NF})$ herangezogen, so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz $f_G = f_A/2 = 1/(2T_A)$ verwendet werden.
Die Grafik zeigt oben das auf $\pm 5$ kHz begrenzte Spektrum $X(f)$ eines Analogsignals, unten das Spektrum $X_A(f)$ des im Abstand $T_A$ = 100 μs abgetasteten Signals ⇒ $f_A$ = 10 kHz. Zusätzlich eingezeichnet ist der Frequenzgang $H(f)$ des Tiefpasses zur Signalrekonstruktion, dessen Grenzfrequenz $f_G = f_A/2 =$ 5 kHz betragen muss. Mit jedem anderen $f_G$–Wert ergibt sich $Y(f) \neq X(f)$. Bei $f_G < 5$ kHz fehlen die oberen $X(f)$–Anteile, während es bei $f_G > 5$ kHz aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in $Y(f)$ kommt.
Wäre die Abtastung beim Sender mit einer Abtastrate $f_A < 10$ kHz erfolgt ⇒ $T_A > 100$ μs, so wäre das Analogsignal $y(t)$ aus den Abtastwerten $y_A(t)$ auf keinen Fall rekonstruierbar.
Hinweis: Zu der im Kapitel 5 behandelten Thematik gibt es ein Interaktionsmodul:
Abtastung analoger Signale und Signalrekonstruktion
Aufgaben zum Kapitel