Exercise 1.3: Calculating with Complex Numbers

From LNTwww
Revision as of 11:35, 13 January 2017 by Guenter (talk | contribs)

Zahlen in der komplexen Ebene

Nebenstehende Grafik zeigt einige Punkte in der komplexen Ebene, nämlich

$$z_1 = {\rm e}^{-{\rm j} 45^{ \circ}}, $$ $$z_2 = 2 \cdot{\rm e}^{{\rm j} 135^{ \circ}},$$ $$z_3 = -{\rm j} .$$

Im Verlauf dieser Aufgabe werden noch folgende komplexe Größen betrachtet: $$z_4 = z_2^2 + z_3^2,$$ $$z_5 = 1/z_2,$$ $$z_6 = \sqrt{z_3},$$ $$z_7 = {\rm e}^{z_2},$$ $$z_8 = {\rm e}^{z_2} + {\rm e}^{z_2^{\star}}.$$


Hinweise:


Fragebogen

1

Welche der folgenden Gleichungen sind zutreffend?

\(2 \cdot z_1 + z_2 =0.\)
\(z_1^{\ast} \cdot z_2 +2=0.\)
\((z_1/z_2) \cdot z_3\) ist rein reell.

2

Welchen Wert besitzt die Zufallsgröße \(z_4 = z_2^2 + z_3^2 = x_4 + {\rm j} \cdot y_4\)?

\( x_4 = \)

\( y_4 = \)

3

Berechnen Sie die komplexe Größe \(<i>z</i><sub>5</sub> = 1/<i>z</i><sub>2</sub> = <i>x</i><sub>5</sub> + j · <i>y</i><sub>5</sub>\)

\( x_5 = \)

\( y_5 = \)

4

\(z_6\) hat als Quadratwurzel von \(z_3\) zwei Lösungen, beide mit dem Betrag \(|z_6| = 1\). Geben Sie die beiden möglichen Phasenwinkel von \(z_6\) an.

\( \phi_6 ({\rm zwischen\hspace{0.1cm} 0 \hspace{0.1cm}Grad \hspace{0.1cm}und \hspace{0.1cm} 180 \hspace{0.1cm}Grad}) \) (zwischen 0 Grad und 180 Grad) =

$\text{Grad}$
\( \phi_6 \) (zwischen -180 Grad und 0 Grad) =

$\text{Grad}$

5

Berechnen Sie \(z_7 = e^{z_2} = x_7 + j \cdot y_7\)

\( x_7 = \)

\( y_7 = \)

6

Geben Sie die komplexe Größe \(z_8 = e^{z_2} + e^{z_2^{\ast}} = x_8 + j \cdot y_8\)

\( x_8 = \)

\( y_8 = \)


Musterlösung

1. Entsprechend den Angaben gilt mit dem Satz von Euler\[2 \cdot z_1 + z_2 = 2 \cdot cos(45^{\circ}) - 2j \cdot sin(45^{\circ}) - 2 \cdot cos(45^{\circ}) + 2j \cdot sin(45^{\circ}) = 0\]

Der zweite Vorschlag ist ebenfalls richtig, da

\(z_1^{\ast} \cdot z_2 = 1 \cdot e^{j45^{\circ} \cdot 2 \cdot e^{j135^{\circ}}=-2}\)

Dagegen ist der dritte Vorschlag falsch. Die Division von \(z_1\) und \(z_2\) liefert\[\frac{z_1}{z_2}=\frac{e^{-j45^{\circ}}}{2 \cdot e^{j135^{\circ}}} = 0.5 \cdot e^{-j180^{\circ}} = -0.5\]

Die Multiplikation mit \(z_3 = -j\) führt zum Ergebnis j/2, also zu einer rein imaginären Größe. Richtig sind also die Lösungsvorschläge 1 und 2.


2. Das Quadrat von \(z_2\) hat den Betrag \(|z_2|^{2}\) und die Phase \(2 \cdot \phi_2\)\[z_2^2 = 2^2 \cdot e^{j270^{\circ}} = 4 \cdot e^{-j90^{\circ}} = -4j\]

Entsprechend gilt für das Quadrat von \(z_3\)\[z_3^2=(-j)^2 = -1\] Somit ist \(x_4\) = –1 und \(y_4\) = –4


3. Durch Anwendung der Divisionsregel erhält man\[z_5 = \frac{1}{z_2} = \frac{1}{2 \cdot e^{j135^{\circ}}} = 0.5 \cdot e^{-j135^{\circ}} = 0.5 \cdot (cos(-135^{\circ}) + j \cdot sin(-135^{\circ}))\] \(\Rightarrow x_5 = y_5 = - \frac{\sqrt{2}}{4}= -0.354\)


4. Die angegeben Beziehung für \(z_6\) kann wie folgt umgeformt werden\[z_6^2 = z_3 = e^{-90^{\circ}}\]

Man erkennt, dass es zwei Möglichkeiten für \(z_6\) gibt, die diese Gleichung erfüllen\[z_6(1.Loesung) = \frac{z_2}{2}= 1 \cdot e^{j135^{\circ}} \Rightarrow \phi_6 = 135^{\circ}\]

\(z_6(2.Loesung) = z_1= 1 \cdot e^{-j45^{\circ}} \Rightarrow \phi_6 = -45^{\circ}\)


5. Die komplexe Größe \(z_2\) lautet in Realteil/imaginärteildarstellung\[z_2 = x_2 + j \cdot y_2 = -\sqrt{2} + j \cdot \sqrt{2}\]

Damit ergibt sich für die komplexe Exponentialfunktion\[z_7 = e^{-\sqrt{2}+j \cdot \sqrt{2}} = e^{-\sqrt{2}} \cdot (cos(\sqrt{2} + j \cdot sin(\sqrt{2})\]

Mit

\(e^{-\sqrt{2}} = 0.243, \quad cos(\sqrt{2}) = 0.156, \quad sin(\sqrt{2}) = 0.988\)

erhält man somit\[z_7 = 0.243 \cdot (0.156 + j \cdot 0.988) = 0.038 + j \cdot 0.24\]


6. Ausgehend vom Ergebnis 4. erhält man für \(z_8\)\[z_8 = e^{-\sqrt{2}} \cdot (cos(\sqrt{2}) + j \cdot sin(\sqrt{2}) + cos(\sqrt{2}) - j \cdot (\sqrt{2}))\]

\(2 \cdot e^{-\sqrt{2}} \cdot cos(\sqrt{2}) = 2 \cdot x_7\)

\(\Rightarrow x_8 = 0.076, \quad y_8 =0\)