Exercise 4.6: AWGN Channel Capacity
Wir gehen vom AWGN-Kanalmodell aus:
- X kennzeichnet den Eingang (Sender).
- N steht für eine gaußverteilte Störung.
- Y = X + N beschreibt den Ausgang (Empfänger) bei additiver Störung.
Für die Wahrscheinlichkeitsdichtefunktion der Störung gelte: fN(n)=1√2πσ2N⋅exp[−n22σ2N]. Da die Zufallsgröße N mittelwertfrei ist ⇒ mN = 0, kann man die Varianz σN2 mit der Leistung PN gleichsetzen. In diesem Fall ist die differentielle Entropie der Zufallsgröße N wie folgt angebbar (mit Pseudo–Einheit „bit”): h(N)=1/2⋅log2(2πe⋅PN). In dieser Aufgabe wird PN = 1 mW vorgegeben. Dabei ist zu beachten:
- Die Leistung PN in obiger Gleichung muss wie die Varianz σN2 dimensionslos sein.
- Um mit dieser Gleichung arbeiten zu können, muss die physikalische Größe PN geeignet normiert werden, zum Beispiel entsprechend PN = 1 mW ⇒ P'N = 1.
- Bei anderer Normierung, beispielsweise PN = 1 mW ⇒ P'N = 0.001 ergäbe sich für h(N) ein völlig anderer Zahlenwert.
Weiter können Sie bei der Lösung dieser Aufgabe berücksichtigen:
- Die Kanalkapazität ist definiert als die maximale Transinformation zwischen Eingang X und Ausgang Y bei bestmöglicher Eingangsverteilung:
C=max
- Die Kanalkapazität des AWGN–Kanals lautet:
C_{\rm AWGN} = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{P_N} \right ) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P\hspace{0.05cm}'_{\hspace{-0.05cm}X}}{P\hspace{0.05cm}'_{\hspace{-0.05cm}N}} \right )\hspace{0.05cm}. Daraus ist ersichtlich, dass die die Kanalkapazität C und auch die Transinformation I(X; Y) im Gegensatz zu den differentiellen Entropien unabhängig von obiger Normierung ist.
- Bei gaußförmiger Stör–WDF fN(n) führt eine ebenfalls gaußförmige Eingangs–WDF fX(x) zur maximalen Transinformation und damit zur Kanalkapazität.
Hinweis: Die Aufgabe gehört zum Themengebiet von Kapitel 4.2.
Fragebogen
Musterlösung
- Für PX < 15 mW wird die Transinformation I(X; Y) stets kleiner als 2 bit sein, unabhängig von allen anderen Gegebenheiten.
- Mit PX = 15 mW ist die maximale Transinformation I(X; Y) = 2 bit nur erreichbar, wenn die Eingangsgröße X gaußverteilt ist. Die Ausgangsgröße Y ist dann ebenfalls gaußverteilt.
- Weist die Zufallsgröße X einen Gleichanteil mX auf, so ist die Varianz σX2 = PX – mX2 bei gegebenem PX kleiner, und es gilt I(X;Y) = 1/2 · log2 (1 + σX2/PN) < 2 bit.
- Voraussetzung für die gegebene Kanalkapazitätsgleichung ist, dass X und N unkorreliert sind. Wären dagegen die Zufallsgrößen X und Y unkorreliert, so ergäbe sich I(X; Y) = 0.
c) Die angegebene Gleichung für die differentielle Entropie macht nur bei dimensionsloser Leistung Sinn. Mit der vorgeschlagenen Normierung erhält man:
- PN = 1 mW ⇒ P'N = 1:
h(N) \ = \ {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 2\pi {\rm e} \cdot 1 \right ) = \ {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 17.08 \right ) \hspace{0.15cm}\underline{= 2.047\,{\rm bit}}\hspace{0.05cm},
- PX = 15 mW ⇒ P′X = 15:
h(X) \ = \ {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 2\pi {\rm e} \cdot 15 \right ) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 2\pi {\rm e} \right ) + {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left (15 \right ) = \ 2.047\,{\rm bit} + 1.953\,{\rm bit} \hspace{0.15cm}\underline{= 4.000\,{\rm bit}}\hspace{0.05cm},
- PY = PX + PN = 16 mW ⇒ P′Y = 16:
h(Y) = 2.047\,{\rm bit} + 2.000\,{\rm bit} \hspace{0.15cm}\underline{= 4.047\,{\rm bit}}\hspace{0.05cm}. d) Für die differentielle Irrelevanz gilt beim AWGN–Kanal: h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = h(N) \hspace{0.15cm}\underline{= 2.047\,{\rm bit}}\hspace{0.05cm}. Entsprechend nebenstehender Grafik gilt aber auch: h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = h(Y) - I(X;Y) = 4.047 \,{\rm bit} - 2 \,{\rm bit} \hspace{0.15cm}\underline{= 2.047\,{\rm bit}}\hspace{0.05cm}. Entsprechend kann die differentielle Äquivokation wie folgt berechnet werden: h(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = h(X) - I(X;Y) = 4.000 \,{\rm bit} - 2 \,{\rm bit} \hspace{0.15cm}\underline{= 2.000\,{\rm bit}}\hspace{0.05cm}. Abschließend wird auch noch die differentielle Verbundentropie angegeben, die aus obigem Schaubild nicht direkt ablesbar ist: h(XY) = h(X) + h(Y) - I(X;Y) = 4.000 \,{\rm bit} + 4.047 \,{\rm bit} - 2 \,{\rm bit} \hspace{0.15cm}\underline{= 6.047\,{\rm bit}}\hspace{0.05cm}.
e) Bei einem idealen Kanal erhält man mit h(X) = 4 bit: h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) \ = \ h(N) \hspace{0.15cm}\underline{= 0\,{\rm (bit)}}\hspace{0.05cm}, h(Y) \ = \ h(X) \hspace{0.15cm}\underline{= 4\,{\rm bit}}\hspace{0.05cm}, I(X;Y) \ = \ h(Y) - h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X)\hspace{0.15cm}\underline{= 4\,{\rm bit}}\hspace{0.05cm}, h(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) \ = \ h(X) - I(X;Y)\hspace{0.15cm}\underline{= 0\,{\rm (bit)}}\hspace{0.05cm}. Die Grafik zeigt diese Größen in einem Flussdiagramm.
Das gleiche Diagramm ergäbe sich auch im wertdiskreten Fall mit M = 16 gleichwahrscheinlichen Symbolen ⇒ H(X) = 4 bit. Man müsste nur jedes „h” durch ein „H” ersetzen.
x