Exercise 1.09: BPSK and 4-QAM
Die Grafik zeigt schematisch die Phasendiagramme der binären Phasenmodulation (abgekürzt BPSK) und der Quadraturamplitudenmodulation (4–QAM genannt).
- Letztere lässt sich durch zwei BPSK–Systeme mit Cosinus– und Minus–Sinus–Träger beschreiben, wobei bei jedem der Teilkomponenten die Sendeamplitude gegenüber der BPSK um den Faktor $\sqrt{2}$ reduziert ist.
- Die Hüllkurve des Gesamtsignals $s(t)$ ist somit ebenfalls konstant gleich $s_{0}$.
- Die Fehlerwahrscheinlichkeit abhängig vom Quotienten $E_{\rm B}/N_{0}$ lautet bei BPSK und 4–QAM gleichermaßen:
- $$p_{\rm B} = \ {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{E_{\rm B}/{ N_0 }} \right ).$$
Die Fehlerwahrscheinlichkeit des BPSK–Systems kann aber auch in der Form
- $$p_{\rm B,\hspace{0.04cm}BPSK} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{T_{\rm B}}}$$
dargestellt werden. Entsprechend gilt für das 4–QAM–System:
- $$p_{\rm B,\hspace{0.04cm}QAM} = {\rm Q}\left ( \frac{s_0/\sqrt{2}}{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$
Die Gleichungen gelten nur unter der Voraussetzung einer exakten Phasensynchronisation:
- Bei einem Phasenversatz $\Delta\phi_{\rm T}$ zwischen sender– und empfangsseitigem Trägersignal erhöht sich die Fehlerwahrscheinlichkeit signifikant, wobei BPSK– und QAM–System unterschiedlich degradiert werden.
- Im Phasendiagramm macht sich der Phasenversatz durch eine Rotation der Punktwolken bemerkbar. In der Grafik sind die Mittelpunkte der Punktwolken für $\Delta\phi_{\rm T} = 15^\circ$ durch gelbe Kreuze markiert, während die roten Kreise die Mittelpunkte für $\Delta\phi_{\rm T} = 0$ angeben.
Es gilt stets $E_{\rm B}/N_{0} = 8$, so dass sich die Fehlerwahrscheinlichkeiten von BPSK und QAM im günstigsten Fall (ohne Phasenversatz) jeweils wie folgt ergeben ⇒ Aufgabe 1.8Z:
- $$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
Bezeichnet man den Abstand der BPSK–Nutzabtastwerte von der (vertikalen) Entscheiderschwelle mit $s_{0}$, so ergibt sich für den Rauscheffektivwert $\sigma_{d} = s_{0}/4$. Die helleren Kreise in der Grafik markieren die Höhenlinien mit dem Radius $2\sigma_{d}$ bzw. $3\sigma_{d}$ der Gaußschen 2D–WDF.
Bei der 4–QAM sind gegenüber der BPSK die Abstände der rot eingezeichneten Nutzabtastwerte von den nun zwei Entscheiderschwellen jeweils um den Faktor $\sqrt{2}$ geringer, aber es ergibt sich auch ein um den gleichen Faktor kleinerer Rauscheffektivwert $\sigma_{d}$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Lineare digitale Modulation – Kohärente Demodulation.
- Bezug genommen wird insbesondere auf die Seite Phasenversatz zwischen Sender und Empfänger.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Die Werte der Q–Funktion können Sie mit dem Applet Komplementäre Gaußsche Fehlerfunktionen ermitteln.
Fragebogen
Musterlösung
(1) Durch die Rotation des Phasendiagramms um $\Delta\phi_{\rm T} = 15°$ wird der Abstand der Nutzabtastwerte von der Schwelle um cos$(15°) \approx 0.966$ geringer. Daraus folgt:
- $$p_{\rm B} = {\rm Q}(0.966 \cdot 4) \approx {\rm Q}(3.86)\hspace{0.1cm}\underline {= 0.57 \cdot 10^{-4}}.$$
(2) Analog zu Teilaufgabe (1) erhält man mit cos$(45°) \approx 0.707$:
- $$p_{\rm B} = {\rm Q}(0.707 \cdot 4) \approx {\rm Q}(2.83)\hspace{0.1cm}\underline {= 0.233 \cdot 10^{-2}}.$$
(3) Bei 4–QAM wird durch die Rotation um $\Delta\phi_{\rm T}$ im Uhrzeigersinn der Abstand
- von der horizontalen Schwelle (Entscheidung des ersten Bits) gleich $s_{0} \cdot \cos(45° + \Delta\phi_{\rm T})$, also kleiner als ohne Phasenversatz,
- von der vertikalen Schwelle (Entscheidung des zweiten Bits) gleich $s_{0} \cdot \cos(45° + \Delta\phi_{\rm T})$, also größer als ohne Phasenversatz.
Damit erhält man für die mittlere Fehlerwahrscheinlichkeit:
- $$p_{\rm B} = \frac{1}{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ+{\rm \Delta} \phi_{\rm T}) \cdot s_0}{0.25 \cdot s_0 / \sqrt{2}} \right ) + \frac{1}{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ-{\rm \Delta} \phi_{\rm T}) \cdot s_0}{0.25 \cdot s_0 / \sqrt{2}}\right ).$$
Hierbei ist der kleinere Rauscheffektivwert der 4–QAM bereits berücksichtigt. Zur Kontrolle berechnen wir die Fehlerwahrscheinlichkeit für $\Delta\phi_{\rm T} = 0$:
- $$p_{\rm B} = \frac{1}{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ) \cdot 4}{1 / \sqrt{2}} \right ) +\frac{1}{2} \cdot {\rm Q}\left ( \frac{\cos(45^\circ) \cdot 4}{1 / \sqrt{2}} \right )= {\rm Q}(4) = 0.317 \cdot 10^{-4}.$$
Dagegen erhält man mit $\Delta\phi_{\rm T} = 15°$:
- $$p_{\rm B} = \ \frac{1}{2} \cdot {\rm Q}\left ( \frac{\cos(60^\circ) \cdot 4}{1 / \sqrt{2}} \right ) +\frac{1}{2} \cdot {\rm Q}\left ( \frac{\cos(30^\circ) \cdot 4}{1 / \sqrt{2}} \right )= $$
- $$\hspace{0.6cm}= \ \frac{1}{2} \cdot \left [{\rm Q}(2.83)+ {\rm Q}(4.90)\right] \approx \frac{1}{2} \cdot \left [0.233 \cdot 10^{-2}+ 0.479 \cdot 10^{-6}\right] \hspace{0.1cm}\underline {= 0.117 \cdot 10^{-2}}.$$
(4) Bei einem Phasenversatz von $45°$ erhält man aus der oben allgemein hergeleiteten Gleichung:
- $$p_{\rm B} = \ \frac{1}{2} \cdot {\rm Q}\left ( \frac{\cos(90^\circ) \cdot 4}{1 / \sqrt{2}} \right ) +\frac{1}{2} \cdot {\rm Q}\left ( \frac{\cos(0^\circ) \cdot 4}{1 / \sqrt{2}} \right )=$$
- $$ \hspace{0.6cm} = \ \frac{1}{2} \cdot \left [{\rm Q}(0)+ {\rm Q}(5.66)\right] \hspace{0.1cm}\underline {\approx 0.25}.$$
Das heißt: Die Fehlentscheidung für das erste Bit ist $50\%$. Dagegen wird das zweite Bit nahezu fehlerfrei $(\approx 10^{–8})$ entschieden. Insgesamt ergibt sich so eine mittlere Fehlerwahrscheinlichkeit von ca. $25\%$.