Exercise 4.13: Four-level QAM
From LNTwww
Wir betrachten nun eine Quadraturamplitudenmodulation mit $M = 4$ Symbolen und den (normierten) Signalraumpunkten
- $$\boldsymbol{ s}_{\rm A} = (+1, +1)\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm B} = (-1, +1)\hspace{0.05cm},$$
- $$ \boldsymbol{ s}_{\rm C} = (-1, -1)\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm D} = (+1, -1) \hspace{0.05cm}.$$
Die Symbole sind gleichwahrscheinlich. Damit kann man zur Berechnung der mittleren Symbolfehlerwahrscheinlichkeit auf die Mittelung verzichten.
Beispielsweise gilt:
- $$p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Pr}( \boldsymbol{ s}_{\rm B} \cup \boldsymbol{ s}_{\rm C} \cup \boldsymbol{ s}_{\rm D} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) \hspace{0.05cm}.$$
Die Zuordnung der Symbole zu Bitdupeln kann ebenfalls der Grafik (rote Beschriftungen) entnommen werden. Hierbei ist die Graycodierung vorausgesetzt.
Hinweise:
- Die Aufgabe bezieht sich auf die Theorieseite 6 von Kapitel 4.4.
- Für die Teilaufgabe (4) ist der (zeitdiskrete) AWGN–Kanal mit der Varianz $\sigma_n^2 = N_0/2$ vorausgesetzt.
- Für die Wahrscheinlichkeit, dass durch dessen Rauschsignal $n$ ein Symbol horizontal oder vertikal verfälscht wird, gilt mit der komplementären Gaußschen Fehlerfunktion:
- $$p = {\rm Pr}( n < -x_0) = {\rm Pr}( n > + x_0) = {\rm Q}(x_0 / \sigma_n) \hspace{0.05cm}.$$
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)