Exercise 2.4: Dual Code and Gray Code

From LNTwww
Revision as of 14:10, 10 November 2017 by Mohamed (talk | contribs)

Quaternärsignale mit Dual- und Graycodierung

Die beiden dargestellten Signale $s_{1}(t)$ und $s_{2}(t)$ sind zwei unterschiedliche Realisierungen eines redundanzfreien quaternären Sendesignals, die beide vom blau gezeichneten Quellensignal $q(t)$ abgeleitet wurden. Bei einem der Sendesignale wurde der sog. $\color{red} {\rm Dualcode}$ mit der Zuordnung

$$\mathbf{LL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0, \hspace{0.15cm} \mathbf{LH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0/3,$$
$$\mathbf{HL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0/3, \hspace{0.15cm} \mathbf{HH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0$$

verwendet, beim anderen eine bestimmte Form eines $\color{red} {\rm Graycodes}$. Dieser zeichnet sich dadurch aus, dass sich die Binärdarstellung benachbarter Amplitudenwerte immer nur in einem einzigen Bit unterscheiden.

Bei der Lösung der Aufgabe soll von folgenden Voraussetzungen ausgegangen werden:

  • Die Amplitudenstufen liegen bei $±3\ \rm V$ und $±1 \ \rm V$. Die Entscheiderschwellen liegen in der Mitte zwischen zwei benachbarten Amplitudenwerten, also bei $–2\ \rm V$, $0\ \rm V$ und $+2\ \rm V$.
  • Der Rauscheffektivwert ist $\sigma_{d}$. Dieser ist so zu wählen, dass die Verfälschungswahrscheinlichkeit vom äußeren Symbol $(+s_0)$ zum nächstgelegenen Symbol $(+s_{0}/3)$ genau $p = 1\%$ beträgt.
  • Verfälschungen zu nicht benachbarten Symbolen können ausgeschlossen werden; bei Gaußschen Störungen ist diese Vereinfachung in der Praxis stets erlaubt.
  • Man unterscheidet grundsätzlich zwischen der $\color{red} {\rm Symbolfehlerwahrscheinlichkeit} \ p_{\rm S}$ (bezogen auf das Quaternärsignal) und der $\color{red} {\rm Bitfehlerwahrscheinlichkeit} \ p_{B}$ (bezogen auf das Quellensignal).


Hinweis:


Die Aufgabe gehört zum Themengebiet von Redundanzfreie Codierung. Zur numerischen Auswertung der Q–Funktion können Sie das folgende Interaktionsmodul benutzen:

Komplementäre Gaußsche Fehlerfunktionen

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)