Exercise 3.6Z: Transition Diagram at 3 States
Im Zustandsübergangsdiagramm eines Codierers mit Gedächtnis $m$ gibt es $2^m$ Zustände. Das dargestellte Diagramm mit acht Zuständen beschreibt deshalb einen Faltungscoder mit dem Gedächtnis $m = 3$.
Normalerweise bezeichnet man die Zustände mit $S_0, \ ... , \ , \ S_{\mu}, \ ... \ , \ S_7$, wobei der Index $\mu$ aus der Belegung des Schieberegisters (Inhalt von links nach rechts: $u_{i–1}, u_{i–2}, u_{i–3})$ festgelegt ist:
- $$\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l} \hspace{0.05cm}.$$
Der Zustand $S_0$ ergibt sich deshalb für den Schieberegisterinhalt „$000$”, der Zustand $S_1$ für „$100$” und der Zustand $S_7$ für „$111$”.
In obiger Grafik sind allerdings für die Zustände $S_0, \, ... \, , \, S_7$ Platzhalter names $\mathbf{A}, \, ... \, , \, \mathbf{H}$ verwendet. In den Teilaufgaben (1) und (2) sollen Sie klären, welcher Platzhalter für welchen Zustand steht.
Bei Faltungscodierer der Rate $1/n$, die her ausschließlich betrachtet werden sollen, gehen von jedem Zustand $S_{\mu}$ zwei Pfeile ab, ein roter für das aktuelle Informationsbit $u_i = 0$ und ein blauer für $u_i = 1$. Auch deshalb ist das gezeigte Zustandsübergangsdiagramm nicht vollständig.
Zu erwähnen ist weiterhin:
- Bei jedem Zustand kommen auch zwei Pfeile an, wobei diese durchaus gleichfarbig sein können.
- Neben den Pfeilen stehen üblicherweise noch die $n$ Codebits. Auch hierauf wurde hier verzichtet.
Hinweis:
- Die Aufgabe bezieht sich auf die beiden ersten Seiten des Kapitels Codebeschreibung mit Zustands– und Trellisdiagramm.
- In der Aufgabe Z3.7 werden zwei Faltungscodes mit Gedächtnis $m = 3$ untersucht, die beide durch das hier analysierte Zustandsübergangsdiagramm beschrieben werden können.
Fragebogen
Musterlösung