Exercise 4.3: Iterative Decoding at the BSC

From LNTwww
Revision as of 21:38, 6 December 2017 by Hussain (talk | contribs)

BSC–Modell und mögliche Empfangswerte

Wir betrachten in dieser Aufgabe zwei Codes:

$$\underline{x} = \big (\hspace{0.05cm}(0, 0, 0), \hspace{0.1cm} (0, 1, 1), \hspace{0.1cm} (1, 0, 1), \hspace{0.1cm} (1, 1, 0) \hspace{0.05cm} \big ) \hspace{0.05cm}, $$
$$\underline{x} = \big (\hspace{0.05cm}(0, 0, 0), \hspace{0.1cm} (1, 1, 1) \hspace{0.05cm} \big ) \hspace{0.05cm}.$$


Der Kanal wird auf Bitebene durch das BSC–Modell beschrieben. Entsprechend der Grafik gilt dabei:

$${\rm Pr}(y_i \ne x_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}\varepsilon = 0.269\hspace{0.05cm},$$
$${\rm Pr}(y_i = x_i) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}1-\varepsilon = 0.731\hspace{0.05cm}.$$

Hierbei bezeichnet $\epsilon$ die Verfälschungswahrscheinlichkeit.

Bis auf die letzte Teilaufgabe wird stets von folgendem Empfangswert ausgegangen:

$$\underline{y} = (0, 1, 0) =\underline{y}_2 \hspace{0.05cm}. $$

Die hier gewählte Indizierung aller möglichen Empfangsvektoren kann der Grafik entnommen werden. Der meist betrachtete Vektor $\underline{y}_2$ ist hierbei rot hervorgehoben. Für die Teilaufgabe (6) gilt dann:

$$\underline{y} = (1, 1, 0) =\underline{y}_6 \hspace{0.05cm}. $$

Zur Decodierung sollen in der Aufgabe untersucht werden:

  • die Syndromdecodierung, die bei den hier betrachteten Codes als Hard Decision Maximum Likelihood Detection (HD–ML) vornimmt. Hinweis: Softwerte liegen beim BSC nicht vor.
  • die symbolweise Soft–in Soft–out Decodierung (SISO) entsprechend dieses Abschnitts.


Hinweise:

  • Die Aufgabe bezieht sich auf das Kapitel Soft–in Soft–out Decoder.
  • Das vom Decoder ausgewählte Codewort wird in den Fragen mit $\underline{z}$ bezeichnet.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Welche Aussagen gelten für die Decodierung des SPC (3, 2, 2)?

Die HD–Syndromdecodierung liefert das Ergebnis $\underline{z} = (0, \, 1, \, 0)$,
Die HD–Syndromdecodierung liefert das Ergebnis $\underline{z} = (0, \, 0, \, 0)$,
Die HD–Syndromdecodierung versagt hier.

2

Welche Aussagen gelten für den RC (3, 1, 3)?

Die HD–Syndromdecodierung liefert das Ergebnis $\underline{z} = (0, \, 1, \, 0)$,
Die HD–Syndromdecodierung liefert das Ergebnis $\underline{z} = (0, \, 0, \, 0)$,
Die HD–Syndromdecodierung versagt hier.

3

Input-Box Frage

$xyz \ = \ $

$ab$

4

Input-Box Frage

$xyz \ = \ $

$ab$

5

Multiple-Choice

correct
false

6

Multiple-Choice

correct
false


Musterlösung

(1)  (2)  (3)  (4)  (5)