Exercise 2.5: Distortion and Equalization

From LNTwww
Revision as of 17:12, 2 February 2017 by Guenter (talk | contribs)

Trapezspektrum und zugehörige Impulsantwort

Betrachtet wird ein Nachrichtensystem mit Eingang $x(t)$ und Ausgang $y(t)$ , das durch den trapezförmigen Frequenzgang $H(f)$ gemäß der oberen Grafik vollständig beschrieben wird. Mit dem Rolloff–Faktor $r = 0.5$ sowie der äquivalenten Bandbreite $\Delta f = 16 \ \rm kHz$ lautet die dazugehörige, über die Fourierrücktransformation berechenbare Impulsantwort: $$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t )\cdot {\rm si}(\pi \cdot r \cdot \Delta f \cdot t ) .$$

Als Eingangssignale stehen zur Verfügung:

  • Die Summe zweier harmonischer Schwingungen:
$$x_1(t) = {1\, \rm V} \cdot \cos(\omega_1 \cdot t) + {1\, \rm V} \cdot \sin(\omega_2 \cdot t).$$
Hierbei gelte für $\omega_1 = 2\pi; \cdot 2000 \ {\rm 1/s}$ und $\omega_2 \gt \omega_1$.
  • Ein periodisches Dreiecksignal:
$$x_2(t) = \frac{8\, \rm V}{\pi^2} \cdot \left[\cos(\omega_0 t) + {1}/{9} \cdot \cos(3\omega_0 t) + {1}/{25} \cdot \cos(5\omega_0 t) + \hspace{0.05cm}...\right].$$
Es ist anzumerken, dass die Grundfrequenz $f_0 = 2 \ \rm kHz$ bzw. $3\ \rm kHz$ beträgt. Zum Zeitpunkt $t = 0$ ist der Signalwert in beiden Fällen $1 \ \rm V$.
  • Ein Rechteckimpuls $x_3(t)$ mit Amplitude $A = 1 \ \rm V$ und Dauer $T = 1 \ \rm ms$. Da dessen Spektrum $X_3(f)$ bis ins Unendliche reicht, führt $H(f)$ hier immer zu linearen Verzerrungen.


Ab der Teilaufgabe (6) soll versucht werden, durch einen nachgeschalteten Entzerrer mit

  • Frequenzgang $H_{\rm E}(f)$,
  • Eingangssignal $y(t)$, und
  • Ausgangssignal $z(t)$

die eventuell von $H(f)$ erzeugten Verzerrungen zu eliminieren.

Hinweise:

  • Die Aufgabe gehört zum Kapitel Lineare Verzerrungen.
  • Der im Fragenkatalog verwendete Begriff „Gesamtverzerrung” bezieht sich auf das Eingangssignal $x(t)$ und das Ausgangssignal $z(t)$.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Welche Verzerrungsarten können bei diesem System ausgeschlossen werden?

Nichtlineare Verzerrungen.
Dämpfungsverzerrungen.
Phasenverzerrungen.

2

Welche Eigenschaften zeigt das System beim Testsignal $x_1(t)$ mit $f_2 = 4 \ \rm kHz$?

Es wirkt wie ein ideales System.
Es wirkt wie ein verzerrungsfreies System.
Man erkennt, dass ein verzerrendes System vorliegt.

3

Welche Eigenschaften zeigt das System beim Testsignal $x_1(t)$ mit $f_2 = 10 \ \rm kHz$?

Es wirkt wie ein ideales System.
Es wirkt wie ein verzerrungsfreies System.
Man erkennt, dass ein verzerrendes System vorliegt.

4

Wie groß ist beim Testsignal $x_2(t)$ mit $f_0 = 3 \ \rm kHz$ die Maximalabweichung $\varepsilon_{\rm max} = |y_2(t_0) - x_2(t_0)|$. An welcher Stelle $t_0$ tritt $\varepsilon_{\rm max}|$ auf?

$f_0 = 3\ \rm kHz$:    $\varepsilon_\text{max} \ = $

$\ \rm V$
$t_0 \ = $

$\ \rm ms$

5

Wie groß ist die maximale Abweichung $\varepsilon_{\rm max}|$ mit $f_0 = 2 \ \rm kHz$?

$f_0 = 2\ \rm kHz$:    $\varepsilon_\text{max} \ = $

$\ \rm V$

6

Welchen Verlauf sollte der Entzerrer $H_{\rm E}(f)$ besitzen, um alle Verzerrungen von $H(f)$ bestmöglich zu kompensieren. Welcher Betragswert ergibt sich bei $f = 10 \ \rm kHz$?

$|H_E(f = 10 \ \rm kHz)| \ = $

7

Bei welchen der aufgeführten Signale ist eine vollständige Entzerrung möglich? Unter vollständiger Entzerrung soll dabei $z(t) = x(t)$ verstanden werden.

Beim Signal $x_1(t)$ mit $f_2 = 10 \ \rm kHz$.
Beim Signal $x_2(t)$.
Beim Signal $x_3(t)$.


Musterlösung

(1)  Durch die Angabe eines Frequenzgangs wird bereits implizit ein lineares System vorausgesetzt, so dass nichtlineare Verzerrungen nicht auftreten können. Da $H(f)$ rein reell ist, können Phasenverzerrungen ebenfalls ausgeschlossen werden   ⇒   Lösungsvorschläge 1 und 3.

(2)  Das Ausgangssignal ist $y_1(t) = x_1(t)$. Somit ist das System nicht nur verzerrungsfrei, sondern kann für diese Anwendung auch als ideal bezeichnet werden. Richtig sind also die Alternativen 1 und 2.

(3)  In diesem Fall erhält man das Ausgangssignal: $$y_1(t)= 1\,{\rm V}\cdot \cos(2 \pi \cdot f_1 \cdot t) + {1}/{4}\cdot 1\,{\rm V}\cdot \sin(2 \pi \cdot f_2 \cdot t).$$

Während der Anteil bei $f_1$ unverändert übertragen wird, ist der Sinusanteil mit $f_2$ auf ein Viertel gedämpft. Also liegen Dämpfungsverzerrungen vor   ⇒   Antwort 3.

(4)  Das Ausgangssignal $y_2(t)$ hat die folgende Form, wenn man die Grundfrequenz $f_0 = 3 \ \rm kHz$ berücksichtigt: $$y_2(t)= \frac{8\,{\rm V}}{\pi^2} \left( \cos(\omega_0 t) + \frac{3}{8}\cdot \frac{1}{9} \cdot \cos(3\omega_0 t)\right) .$$

Der Faktor 3/8 beschreibt $H(f = 9 \ \rm kHz)$. Alle weiteren Spektralanteile bei $15 \ \rm kHz$, $21 \ \rm kHz$z usw. werden vom System unterdrückt.

Die stärksten Abweichungen zwischen $x_2(t)$ und $y_2(t)$ wird es bei den Dreieckspitzen geben, da sich hier die fehlenden hohen Frequenzen am stärksten auswirken. Zum Beispiel erhält man den Zeitpunkt $\underline{t= 0}$: $$y_2(t=0)= \frac{8\,{\rm V}}{\pi^2} \left( 1 + {3}/{72}\right)= 0.844\,{\rm V} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \varepsilon_{\rm max} = |y_2(t=0)- x_2(t=0)| \hspace{0.15cm}\underline{= 0.156\,{\rm V}}.$$

(5)  Mit der Grundfrequenz $f_0 = 2 \ \rm kHz$ sowie den Übertragungswerten $H(3f_0) = 0.75$, $H(5f_0) = 0.25$ und $H(7f_0) = 0$ ergibt sich: $$y_2(t=0)= \frac{8\,{\rm V}}{\pi^2} \left( 1 + \frac{3}{4}\cdot \frac{1}{9} + \frac{1}{4} \cdot\frac{1}{25}\right)= 0.886\,{\rm V}\hspace{0.5cm} \Rightarrow \hspace{0.5cm}\varepsilon_{\rm max} \hspace{0.15cm}\underline{= 0.114\,{\rm V}}.$$

(6)  Im Bereich bis $4 \ \rm kHz$ ist $H_{\rm E}(f) = H(f) = 1$ zu setzen. Dagegen gilt im Bereich von $4 \ \rm kHz$ bis $12 \ \rm kHz$: $$H_{\rm E}(f)= \frac{1}{H(f)} = \frac{1}{1.5 \cdot [1 - f/(12\,{\rm kHz})]} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} H_{\rm E}(f = 10\,{\rm kHz})\hspace{0.15cm}\underline{= 4} .$$

Der Nennerausdruck beschreibt hierbei die Geradengleichung des Flankenabfalls.

(7)  Sowohl $x_2(t)$ als auch $x_3(t)$ beinhalten auch Spektralanteile bei Frequenzen größer als $12 \ \rm kHz$. Wurden diese durch die Bandbegrenzung von $H(f)$ abgeschnitten, so können sie durch den Entzerrer nicht mehr rekonstruiert werden. Das heißt, dass nur das Signal $x_1(t)$ durch $H_{\rm E}(f)$ wieder hergestellt werden kann, allerdings nur dann, wenn $f_2 < 12 \ \rm kHz$ gilt: $$z_1(t)= 1 \cdot 1\,{\rm V}\cdot \cos(2 \pi \cdot f_1 \cdot t) + 4 \cdot \frac{1}{4}\cdot 1\,{\rm V}\cdot \sin(2 \pi \cdot f_2 \cdot t).$$

Die jeweils ersten Faktoren geben jeweils die Verstärkungswerte von $H_{\rm E}(f)$ an   ⇒   Antwort 1.