Exercise 2.4Z: Repetition to IDFT

From LNTwww
Revision as of 16:26, 8 February 2018 by Guenter (talk | contribs)

Fünf Mustersätze zur IDFT

Bei der Diskreten Fouriertransformation (DFT) werden aus den Zeitabtastwerten $d(\nu) \ {\rm mit} \ \nu = 0$, ... , $N – 1$ die diskreten Spektralkoeffizienten $D(\mu) \ {\rm mit} \ \mu = 0$, ... , $N – 1$ wie folgt berechnet:

$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

Hierbei ist mit $w$ der komplexe Drehfaktor abgekürzt, der folgendermaßen definiert ist:

$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( \frac {2 \pi}{N}\right)-{\rm j} \cdot \sin \left( \frac {2 \pi}{N}\right) \hspace{0.05cm}.$$

Somit gilt für die Inverse Diskrete Fouriertransformation (IDFT) als Umkehrfunktion der DFT:

$$ d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.03cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$

In dieser Aufgabe sollen für verschiedene Beispielfolgen $D(\mu)$ – die in obiger Tabelle mit $\boldsymbol{\rm A}$, ... , $\boldsymbol{\rm E}$ bezeichnet sind – die Zeitkoeffizienten $d(\nu)$ ermittelt werden. Es gilt somit stets $N = 8$.




Hinweise:

  • Die Aufgabe bezieht sich auf die theoretischen Grundlagen des Kapitels Diskrete Fouriertransformation des Buches „Signaldarstellung” und ist identisch mit der dortigen Aufgabe 5.2.
  • Sie können Ihre Lösung mit dem interaktiven Applet Diskrete Fouriertransformation überprüfen.
  • DFT und IDFT spielen auch bei DSM/DSL eine große Rolle.
  • Im entsprechenden Kapitel werden die Spektralkoeffizienten allerdings mit $D_k$ bezeichnet und die Zeitabtastwerte mit $s_l$. Wir bitten Sie, diese Nomenklaturdiskrepanz zu entschuldigen.
  • Für die beiden Laufvariablen gelten mit dem DFT–Parameter $N = 8$:
$$0 \le k \le 7, \hspace{0.2cm}0 \le l \le 7 \hspace{0.05cm}.$$
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.



Fragebogen

1

Wie lauten die Zeitkoeffizienten $d(\nu)$ für $D(\mu)$ gemäß Spalte $\boldsymbol{\rm A}$?

$D(\mu) \ {\rm gemäß \ „A”}: \ \ d(0) \ = \ $

$D(\mu) \ {\rm gemäß \ „A”}: \ \ d(1) \ = \ $

2

Wie lauten die Zeitkoeffizienten $d(\nu)$ für $D(\mu)$ gemäß Spalte $\boldsymbol{\rm B}$?

$D(\mu) \ {\rm gemäß \ „B”}: \ \ d(0) \ = \ $

$D(\mu) \ {\rm gemäß \ „B”}: \ \ d(1) \ = \ $

3

Wie lauten die Zeitkoeffizienten $d(\nu)$ für $D(\mu)$ gemäß Spalte $\boldsymbol{\rm C}$?

$D(\mu) \ {\rm gemäß \ „C”}: \ \ d(0) \ = \ $

$D(\mu) \ {\rm gemäß \ „C”}: \ \ d(1) \ = \ $

4

Wie lauten die Zeitkoeffizienten $d(\nu)$ für $D(\mu)$ gemäß Spalte $\boldsymbol{\rm D}$?

$D(\mu) \ {\rm gemäß \ „D”}: \ \ d(0) \ = \ $

$D(\mu) \ {\rm gemäß \ „D”}: \ \ d(1) \ = \ $

5

Wie lauten die Zeitkoeffizienten $d(\nu)$ für $D(\mu)$ gemäß Spalte $\boldsymbol{\rm E}$?

$D(\mu) \ {\rm gemäß \ „E”}: \ \ d(0) \ = \ $

$D(\mu) \ {\rm gemäß \ „E”}: \ \ d(1) \ = \ $


Musterlösung

(1)  Aus der IDFT–Gleichung wird mit $D(\mu) = 0$ für $\mu \neq 0$:

$$d(\nu) = D(0) \cdot w^0 = D(0) \ = \ 1\hspace{1.0cm}(0 \le \nu \le 7)\\ \Rightarrow\hspace{0.3cm}d(0) = d(1) \ = \ 1.$$

Dieser Parametersatz beschreibt somit die diskrete Form der Fourierkorrespondenz des Gleichsignals:

$$x(t) = 1 \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {\delta}(f) \hspace{0.05cm}.$$


(2)  Hier sind alle Spektralkoeffizienten $0$ außer $D_{1} = D_{7} = 0.5$. Daraus folgt für $0 ≤ \nu ≤ 7:$

$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (7\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} \hspace{0.05cm}.$$

Aufgrund der Periodizität gilt aber auch:

$$d(\nu) \ = \ 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /4) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{4} \cdot \nu \right)$$
$$ \ \Rightarrow \ \hspace{0.3cm}d(0) = 1, \hspace{0.2cm}d(1) = {1}/{\sqrt{2}} \approx 0.707 \hspace{0.05cm}.$$

Es handelt sich also um das zeitdiskrete Äquivalent zu

$$x(t) = \cos(2 \pi \cdot f_{\rm A} \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {1}/{2} \cdot {\delta}(f + f_{\rm A}) + {1}/{2} \cdot {\delta}(f - f_{\rm A}) \hspace{0.05cm},$$

wobei $f_{\rm A}$ die kleinste in der DFT darstellbare Frequenz bezeichnet.


(3)  Gegenüber Teilaufgabe 2) ist nun die Frequenz doppelt so groß, nämlich $2 \cdot f_{\rm A}$ anstelle von $f_{\rm A}$:

$$x(t) = \cos(2 \pi \cdot (2f_{\rm A}) \cdot t) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X(f) = {1}/{2} \cdot {\delta}(f + 2f_{\rm A}) + {1}/{2}\cdot {\delta}(f - 2f_{\rm A}) \hspace{0.05cm},$$

Damit beschreibt die Folge $〈d(\nu)〉$ zwei Perioden der Cosinusschwingung, und es gilt für $0 ≤ \nu ≤ 7$:

$$d(\nu) \ = \ 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} (\pi /2) \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left({\pi}/{2} \cdot \nu \right)$$
$$\ \Rightarrow \ \hspace{0.3cm}d(0) = 1, \hspace{0.2cm}d(1) = 0 \hspace{0.05cm}.$$

(4)  Durch eine weitere Verdoppelung der Cosinusfrequenz auf $4f_{\rm A}$ kommt man schließlich zur zeitkontinuierlichen Fourierkorrespondenz

$$d(\nu) = 0.5 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} + 0.5 \cdot {\rm e}^{{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu} = \cos \left(\pi \cdot \nu \right) \hspace{0.05cm}$$

und damit zu den Zeitkoeffizienten

$$\underline{d(0) =}d(2) =d(4) =d(6) \hspace{0.15cm}\underline{ = +1}, \hspace{0.2cm}\underline{d(1)} =d(3) =d(5) =d(7) \hspace{0.15cm} \underline{= -1} \hspace{0.05cm}.$$

Zu beachten ist, dass die beiden Diracfunktionen in der zeitdiskreten Darstellung aufgrund der Periodizität zusammenfallen. Das heißt: Die Koeffizienten $D(4) = 0.5$ und $D(-4) = 0.5$ ergeben zusammen $D(4) = 1$.


(5)  Auch die Diskrete Fouriertransformation ist linear. Deshalb ist das Superpositionsprinzip weiterhin anwendbar. Die Koeffizienten $D(\mu)$ aus Spalte E ergeben sich als die Summen der Spalten A und D. Deshalb wird aus der alternierenden Folge $〈d(\nu)〉$ entsprechend Teilaufgabe 4) die um 1 nach oben verschobene Folge:

$$\underline{d(0) =}d(2) =d(4) =d(6) \hspace{0.15cm}\underline{ = 2}, \hspace{0.2cm}\underline{d(1)} =d(3) =d(5) =d(7) \hspace{0.15cm} \underline{= 0} \hspace{0.05cm}.$$