Exercise 1.7: Ternary Markov Chain

From LNTwww
Revision as of 14:28, 3 January 2018 by Guenter (talk | contribs) (Guenter verschob die Seite 1.7 Ternäre Markovkette nach Aufgabe 1.7: Ternäre Markovkette)

Ternäre Markovkette

Wir betrachten eine Markovkette mit den drei möglichen Ereignissen $A$, $B$ und $C$

  • Die Übergangswahrscheinlichkeiten sind der Grafik zu entnehmen.
  • Ein Übergang von $A$ nach $C$ und umgekehrt ist somit nicht möglich:
$$p_\text{AC} = p_\text{CA} = 0.$$

Die drei Ereigniswahrscheinlichkeiten zum Startzeitpunkt $\nu = 0$ sind wie folgt gegeben:

$${\rm Pr}(A_0) = 0,$$
$${\rm Pr}(B_0) = 1,$$
$${\rm Pr}(C_0) = 0.$$

Hinweise:

  • Die Aufgabe gehört zum Kapitel Markovketten.
  • Insbesondere wird auf die Seite Matrix-Vektordarstellung Bezug genommen.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Geben Sie die Übergangsmatrix ${\mathbf{P}}$ und die Übergangswahrscheinlichkeiten $p_\text{AA}$, $p_\text{BB}$ und $p_\text{CC}$ an.

$p_\text{AA} \ = $

$p_\text{BB} \ = $

$p_\text{CC} \ = $

2

Berechnen Sie die Ereigniswahrscheinlichkeiten zum Zeitpunkt $\nu = 1$.

${\rm Pr}(A_1) \ = $

3

Berechnen Sie die Ereigniswahrscheinlichkeiten zum Zeitpunkt $\nu = 2$.

${\rm Pr}(A_2) \ = $

4

Welche Wahrscheinlichkeiten werden sich sehr lange nach Einschalten der Markovkette einstellen $(ν \rightarrow \infty)$? Wie groß ist insbesondere die ergodische Wahrscheinlichkeit ${\rm Pr}(A)$?

${\rm Pr}(A) \ =$


Musterlösung

(1)  Allgemein bzw. in diesem Sonderfall muss gelten:

$$p_{\rm AA} = 1 - p_{\rm AB} - p_{\rm AC} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm AA} = 1 - 0.75 -0 \hspace{0.15cm}\underline {= 0.25},$$
$$p_{\rm BB} = 1 - p_{\rm BA} - p_{\rm BC} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm BB} = 1 - 0.75 -0.25 \hspace{0.15cm}\underline {= 0},$$
$$p_{\rm CC} = 1 - p_{\rm CA} - p_{\rm CB} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm CC} = 1 - 0 - 0.25 \hspace{0.15cm}\underline {= 0.75}.$$

Damit lautet die Übergangsmatrix:

$${\mathbf{P}} = \left[ \begin{array}{ccc} 1/4 & 3/4 & 0 \\ 3/4 & 0 & 1/4 \\ 0 & 1/4 & 3/4 \end{array} \right] .$$


(2)  Wegen ${\rm Pr}(B_0) = 1$ und $p_\text{BB} = 0$ kann zum Zeitpunkt $\nu = 1$ das Ereignis $B$ nicht auftreten und das Ereignis $A$ ist sehr viel wahrscheinlicher als das Ereignis $C$:

$$\hspace{0.15cm}\underline {{\rm Pr}(A_1) = 0.75}; \hspace{0.5cm} {\rm Pr}(B_1) = 0; \hspace{0.5cm}{\rm Pr}(C_1) = 0.25.$$

Zum gleichen Ergebnis kommt man durch Anwendung der Vektor-Matrixdarstellung.


(3)  Für den Wahrscheinlichkeitsvektor zum Zeitpunkt $\nu = 2$ gilt:

$${\mathbf{p}^{(\nu = 2)}} = {\mathbf{P}}^{\rm T} \cdot {\mathbf{p}^{(\nu =1 )}}= \left[ \begin{array}{ccc} 1/4 & 3/4& 0 \\ 3/4 & 0 & 1/4 \\ 0& 1/4& 3/4 \end{array} \right] \left[ \begin{array}{c} 3/4 \\ 0 \\ 1/4 \end{array} \right] = \left[ \begin{array}{c} 3/16 \\ 10/16 \\ 3/16 \end{array} \right] .$$

Damit ist die Ereigniswahrscheinlichkeit ${\rm Pr}(A_2) = 3/16\hspace{0.15cm}\underline {= 0.1875}$.

(4)  Zur Lösung dieser Aufgabe sollen verschiedene Möglichkeiten angegeben werden.

  • Zum einen das Lösen eines Gleichungssystems mit drei Unbekannten:
$${\rm Pr}(A) = 1/4 \hspace{0.05cm} \cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} 3/4 \hspace{0.05cm} \cdot \hspace{0.05cm} {\rm Pr}(B),$$
$${\rm Pr}(B) = 3/4 \hspace{0.05cm} \cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{2.8cm} + \hspace{0.1cm} 1/4 \hspace{0.05cm} \cdot \hspace{0.05cm} {\rm Pr}(C),$$
$${\rm Pr}(C) = \hspace{2.8cm} 1/4 \hspace{0.05cm} \cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm} 3/4 \hspace{0.05cm} \cdot \hspace{0.05cm} {\rm Pr}(C).$$
Aus der ersten Gleichung erhält man ${\rm Pr}(B) = {\rm Pr}(A)$, aus der letzten ${\rm Pr}(C) = {\rm Pr}(A)$. Da die Summe aller Wahrscheinlichkeiten gleich $1$ ist, folgt $ {\rm Pr}(A) = {\rm Pr}(B) = {\rm Pr}(C) = 1/3 \hspace{0.15cm}\underline {\approx 0.333}$.
  • Zum gleichen Ergebnis kommt man durch Analyse der Übergangsmatrix. Da die Summe jeder Spalte gleich $1$ ist (das heißt: die Summe einer jeden Zeile der transponierten Matrix ergibt ebenfalls $1$), ist offensichtlich, dass alle Ereigniswahrscheinlichkeiten gleich sein müssen.
  • Auch durch kurzes Nachdenken hätte man das Ergebnis ohne Rechnung vorhersagen können. Da bei jedem Ereignis die Zahlenwerte bei den abgehenden Pfeilen (nur zu anderen Ereignissen) mit denen bei den ankommenden gleich sind, ist nicht einzusehen, warum eines der Ereignisse bevorzugt sein sollte.