Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.4: Frequency and Phase Offset

From LNTwww

Modell des Synchrondemodulators

Betrachtet wird das Quellensignal q(t)=A1cos(2πf1t)+A2sin(2πf2t) mit den Signalparametern

A1=2V,f1=2kHz,
A2=1V,f2=5kHz.

Dieses Signal wird ZSB–amplitudenmoduliert.

Das modulierte Signal s(t) besitzt somit Spektralanteile bei ±45 kHz, ±48 kHz, ±52 kHz und ±55 kHz. Bekannt ist weiter, dass das sendeseitige Trägersignal sinusförmig ist (ϕ_{\rm T} = -90^\circ).

Die Demodulation soll mit der skizzierter Schaltung erfolgen, die durch folgende Parameter bestimmt ist:

  • Amplitude A_{\rm E} (ohne Einheit),
  • Frequenz f_{\rm E},
  • Phase ϕ_{\rm E}.


Der Block H_E(f) beschreibt einen idealen, rechteckförmigen Tiefpass, der geeignet dimensioniert ist.


Hinweise:

\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\right] \hspace{0.05cm},
\sin(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \sin(\alpha-\beta) + \sin(\alpha+\beta)\right] \hspace{0.05cm},
\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right] \hspace{0.05cm}.


Fragebogen

1

Welche der nachfolgenden Aussagen sind zutreffend?

Der Demodulator würde bei ZSB–AM mit Träger besser arbeiten.
Der Träger würde die Sendeleistung unnötigerweise vergrößern.
Die richtige Dimensionierung des Tiefpasses H_{\rm E}(f) ist essentiell.
Man könnte auch einen Hüllkurvendemodulator verwenden.
Hüllkurvendemodulation ist nur für m < 1 anwendbar.

2

Wie sind die Signalparameter von z_{\rm E}(t) zu wählen, damit v(t) = q(t) gilt?

A_{\rm E} \ = \

f_{\rm E} \ \hspace{0.05cm} = \

\ \text{kHz}
\phi_{\rm E} \ = \

\ \text{Grad}

3

Es gelte f_{\rm E} = f_{\rm T} (kein Frequenzversatz). Welches Sinkensignal v(t) ergibt sich mit ϕ_{\rm E} = - 120^\circ? Geben Sie dessen Signalwert bei t = 0 ein.

v(t = 0)\ = \

\ \text{V}

4

Es gelte weiter f_{\rm E} = f_{\rm T}. Welches Sinkensignal υ(t) ergibt sich mit ϕ_{\rm E} = 0^\circ? Geben Sie den Signalwert bei t = 0 ein.

v(t = 0)\ = \

\ \text{V}

5

Es gelte ϕ_{\rm E} = ϕ_{\rm T} (kein Phasenversatz). Welches Sinkensignal erhält man mit Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} – f_{\rm T} = 1 kHz?
Welche der folgenden Aussagen sind richtig?

Es gilt v(t) = q(t) · \cos(2π · Δ\hspace{-0.05cm}f_{\rm T} · t).
v(t) beinhaltet einen Spektralanteil bei 2 kHz.
v(t) beinhaltet einen Spektralanteil bei 4 kHz.
v(t) beinhaltet einen Spektralanteil bei 6 kHz.


Musterlösung

(1)  Richtig sind die Aussagen 2, 3 und 5:

  • Bei ZSB–AM ohne Träger bzw. mit einem Modulationsgrad m > 1 ist Hüllkurvendemodulation nicht anwendbar.
  • Die Leistungsfähigkeit des Synchrondemodulators wird durch den zusätzlichen Trägeranteil nicht gesteigert, sondern führt lediglich zu einer unnötigen Vergrößerung der aufzubringenden Sendeleistung.
  • Auch die dritte Aussage ist richtig. In der Musterlösung zur Aufgabe 2.4Z wird gezeigt, welche Auswirkungen ein Verzicht bzw. eine falsche Dimensionierung von H_{\rm E} (f) hat.


(2)  Wie der Name „Synchrondemodulator” bereits impliziert, müssen die Signale z(t) und z_{\rm E} (t) frequenz– und phasensynchron sein:

f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.

Die Trägerfrequenz f_{\rm T} am Sender kann aus den Angaben über das Sendespektrum S(f) ermittelt werden. Bei vollständiger Synchronität gilt:

v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.

Der zweite Term wird durch den Tiefpass entfernt. Mit A_{\rm E}\hspace{0.15cm}\underline{ = 2} gilt somit v(t) = q(t).


(3)  Im Theorieteil wurde gezeigt, dass bei ZSB–AM und Synchrondemodulation allgemein gilt:

v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.

Auch bei ungenügender Phasensynchronisation kommt es nicht zu Verzerrungen, sondern nur zu einer frequenzunabhängigen Dämpfung. Mit ϕ_{\rm T} =-90^\circ und ϕ_{\rm T} = –120^\circ ist Δϕ_{\rm T} = -30^\circ und man erhält:

v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.


(4)  Nun beträgt die Phasendifferenz Δϕ_{\rm T} = 90^\circ und man erhält v(t) \equiv 0. Es ist müßig darüber zu diskutieren, ob es sich hierbei noch immer um ein verzerrungsfreies System handelt.

Das Ergebnis υ(t) \equiv 0 ist darauf zurückzuführen, dass Cosinus und Sinus orthogonale Funktionen sind. Dieses Prinzip wird zum Beispiel bei der so genannten Quadratur–Amplitudenmodulation ausgenutzt.


(5)  Hier lautet nun die Gleichung für das Signal nach der Multiplikation:

b(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.

Dieses Ergebnis kann mit der trigonometrischen Umformung

\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]

auch wie folgt geschrieben werden:

b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.

Der zweite Term liegt für f_{\rm E} ≈ f_{\rm T} in der Umgebung von 2f_{\rm T} und wird durch den Tiefpass entfernt. Somit bleibt mit der Frequenzdifferenz Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T}= 1 kHz:

v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.
  • Die erste Aussage ist somit richtig. Diese besagt, dass nun das Nachrichtensignal v(t) nach der Demodulation gemäß einer Cosinusfunktion leiser und wieder lauter wird („Schwebung”).
  • Aus dem Cosinusanteil von q(t) mit der Frequenz f_1 = 2 kHz werden nun zwei Anteile (jeweils halber Amplitude) bei 1 kHz und 3 kHz.
  • Ebenso ist im Sinkensignal kein Anteil bei f_2 = 5 kHz enthalten, sondern lediglich Anteile bei 4 kHz und bei 6 kHz:
1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t) = 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t) + 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.

Richtig sind somit die Aussagen 1, 3 und 4.