Exercise 4.15Z: Statements of the Covariance Matrix

From LNTwww
Revision as of 14:50, 5 December 2019 by Guenter (talk | contribs)

Sind die Zufallssignale korreliert?

Gegeben seien die beiden Gaußschen Zufallsgrößen  $u$  und  $v$, jeweils mittelwertfrei und mit Varianz  $\sigma^2 = 1$.

Daraus werden durch Linearkombination drei neue Zufallsgrößen gebildet:

$$x_1 = A_1 \cdot u + B_1 \cdot v,$$
$$x_2 = A_2 \cdot u + B_2 \cdot v,$$
$$x_3 = A_3 \cdot u + B_3 \cdot v.$$

Vorausgesetzt wird, dass in allen betrachteten Fällen  $(i = 1, 2, 3)$  gilt:

$$A_i^2 + B_i^2 =1.$$

Die Grafik zeigt die Signale $x_1(t)$, $x_2(t)$ und $x_3(t)$ für den Fall, der in der Teilaufgabe  (3)  betrachtet werden soll:

  • $A_1 = B_2 = 1$,
  • $A_2 = B_2 = 0$,
  • $A_3 = 0.8, \ B_3 = 0.6$,


Der Korrelationskoeffizient  $\rho_{ij}$  zwischen den Zufallsgrößen  $x_i$  und  $x_j$  wird wie folgt angegeben:

$$\rho_{ij} = \frac{A_i \cdot A_j + B_i \cdot B_j}{\sqrt{(A_i^2 + B_i^2)(A_j^2 + B_j^2)}} = A_i \cdot A_j + B_i \cdot B_j.$$

Unter der hier implizit getroffenen Annahme  $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = 1$  lautet die Kovarianzmatrix  $\mathbf{K}$:

$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{ccc} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{array} \right] .$$

Diese ist bei mittelwertfreien Zufallsgrößen identisch mit der Korrelationsmatrix  $\mathbf{R}$.





Hinweise:



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend? Begründen Sie Ihre Ergebnisse.

$\mathbf{K}$  kann bei geeigneter Wahl von  $A_1$, ... , $B_3$  eine Diagonalmatrix sein.  Oder anders ausgedrückt:   $\rho_{12} = \rho_{13} = \rho_{23} = 0$  ist möglich.
Bei geeigneter Wahl der Parameter  $A_1$, ... , $B_3$  kann genau einer der Korrelationskoeffizienten  $\rho_{ij} = 0$  sein.
Bei geeigneter Wahl der Parameter  $A_1$, ... , $B_3$  können genau zwei der Korrelationskoeffizienten  $\rho_{ij} = 0$  sein.
Bei geeigneter Wahl der Parameter  $A_1$, ... , $B_3$  können alle drei Korrelationskoeffizienten  $\rho_{ij} \ne 0$  sein.

2

Wie lauten die Matrixelemente von  $\mathbf{K}$  mit  $A_1 = A_2 = - A_3$  und  $B_1 = B_2 = - B_3$ ?

$\rho_{12} \ = \ $

$\rho_{13} \ = \ $

$\rho_{23} \ = \ $

3

Berechnen Sie die Koeffizienten  $\rho_{ij}$  für den in der Grafik dargestellten Fall:  $A_1 = 1$,  $B_1 = 0$,  $A_2 = 0$,  $B_2 = 1$,  $A_3 = 0.8$,  $B_3 = 0.6$.

$\rho_{12} \ = \ $

$\rho_{13} \ = \ $

$\rho_{23} \ = \ $


Musterlösung

(1)  Nur die zweite und die letzte Aussage treffen zu:

  • Die Aussage 2 beschreibt den in der Grafik betrachteten Fall, dass zwei Größen (hier:   $x_1$ und $x_2$) unkorreliert sind, während $x_3$ statistische Bindungen bezüglich $x_1$ (über die Größe $u$) und auch in Bezug zu $x_3$ (bedingt durch die Zufallsgröße $v$) aufweist.
  • Die Kombination $\rho_{12} = \rho_{13} = \rho_{23} = 0$   ist bei der hier gegebenen Struktur dagegen nicht möglich. Dazu würde man eine dritte statistisch unabhängige Zufallsgröße $w$ benötigen und es müsste beispielsweise  $x_1 = k_1 \cdot u$ ,  $x_2 = k_2 \cdot v$  und  $x_3 = k_3 \cdot w$  gelten.
  • Die dritte Aussage ist ebenfalls nicht zutreffend: Sind $x_1$ und $x_2$ unkorreliert und gleichzeitig auch $x_1$ und $x_3$, so können auch zwischen $x_2$ und $x_3$ keine statistischen Bindungen bestehen.
  • Im Allgemeinen werden allerdings sowohl $\rho_{12}$ als auch $\rho_{13}$ und $\rho_{23}$ von Null verschieden sein.
  • Ein ganz einfaches Beispiel hierfür wird in der Teilaufgabe (2) betrachtet.


(2)  In diesem Fall sind die Größen  $x_1 = x_2$  vollständig (zu $100\%$) korreliert.

  • Mit $A_2 = A_1$ und $B_2 = B_1$ erhält man für den gemeinsamen Korrelationskoeffizienten:
$$\rho_{12} = A_1 \cdot A_2 + B_1 \cdot B_2 = A_1^2 + B_1^2 \hspace{0.15cm}\underline{=1}.$$
  • In gleicher Weise gilt mit $A_3 = -A_1$ und $B_3 = -B_1$:
$$\rho_{13} = A_1 \cdot A_3 + B_1 \cdot B_3 = -(A_1^2 + B_1^2) \hspace{0.15cm}\underline{=-1 \hspace{0.1cm}(= \rho_{23})}.$$


(3)  Mit diesem Parametersatz ist $x_1$ identisch mit der Zufallsgröße $u$, während $x_2 = v$ gilt.

  • Da $u$ und $v$ statistisch voneinander unabhängig sind, ergibt sich $\rho_{12} \hspace{0.15cm}\underline{ = 0}.$
  • Demgegenüber gilt für die beiden weiteren Korrelationskoeffizienten:
$$\rho_{13} = A_1 \cdot A_3 + B_1 \cdot B_3 = 1 \cdot 0.8 + 0 \cdot 0.6 \hspace{0.15cm}\underline{ = 0.8},$$
$$\rho_{23} = A_2 \cdot A_3 + B_2 \cdot B_3 = 0 \cdot 0.8 + 1 \cdot 0.6 \hspace{0.15cm}\underline{ = 0.6}.$$
  • Für ein (sehr gut) geschultes Auge ist aus der Grafik auf der Angabenseite zu erkennen, dass das Signal $x_3(t)$ mehr Ähnlichkeiten mit $x_1(t)$ aufweist als mit $x_2(t)$.
  • Diese Tatsache drücken auch die berechneten Korrelationskoeffizienten aus.
  • Seien Sie aber nicht frustriert, wenn Sie die unterschiedliche Korrelation in den Signalverläufen nicht erkennen.