Exercise 1.2Z: Lognormal Fading Revisited
We assume similar conditions as in Task 1. 2 but now we summarize the purely distance-dependent path loss V0 and the mean value mS of the lognormal–fading (the index „S” stands for Shadowing): V1=V0+mS.
The total path loss is then given by the equation VP=V1+V2(t)
where V2(t) describes a lognormal–distribution with mean value zero: fV2(V2)=1√2π⋅σS⋅exp[−V222⋅σ2S].
The path loss model shown in the graphic is suitable for the scenario described here:
- Multiply the transmitted signal s(t) first with a constant factor k1 and further with a stochastic quantity z2(t) with the probability density function (PDF) fz2(z2), then the signal r(t) results at the output, whose power PE(t) is of course also time-dependent due to the stochastic component.
- The PDF of the lognormally distributed random variable z2 is for z2≥0:
fz2(z2)=exp[−ln2(z2)/(2⋅C2⋅σ2S)]√2π⋅C⋅σS⋅z2withC=ln(10)20dB.
- For z2≤0 this PDF is equal to zero.
Notes:
- This task belongs to the chapter Distanzabhängige Dämpfung und Abschattung.
- Use the following parameters:
V1=60dB,σS=6dB.
- The probability that a mean-free Gaussian random variable z is greater than its standard deviation σ, is
Pr(z>σ)=Pr(z<−σ)=Q(1)≈0.158.
- Also, Pr(z>2σ)=Pr(z<−2σ)=Q(2)≈0.023.
- Again for clarification: z2 is the fading coefficient in linear units, while V2 is the fading coefficient in logarithmic units.
- The following conversions apply:
z2=10−V2/20dB,V2=−20dB⋅lgz2.
Questionnaire
Sample solution
(2) Only the second statement is correct:
- For the Gaussian random variable V2 all values between –∞ and +∞ are (theoretically) possible.
- The transformation z_2 = 10^{{\it –V_2}\rm /20} results in only positive values for the linear random variable z_2, namely between 0 (if V_2 is positive and goes to infinity) and +∞ (very large negative values of V_2).
'(3) The random value z_2 can only be positive. Therefore the PDF–value f_{\rm z2}(z_2 = 0)\hspace{0.15cm} is \underline{ = 0}.
- Der WDF–Wert für den Abszissenwert z_2 = 1 erhält man durch Einsetzen in die gegebene Gleichung:
- f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {{\rm exp } \left [ - {\rm ln}^2 (z_2 = 1) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}=\frac {1}{ \sqrt{2 \pi } \cdot \sigma_{\rm S} } \cdot \frac {1}{ C } = \frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} } \cdot \frac {20\,\,{\rm dB}}{ {\rm ln} \hspace{0.1cm}(10) } \hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.
- Der erste Anteil ist gleich dem WDF–Wert f_{{\it V}2}(V_2 = 0).
- C berücksichtigt den Betrag der Ableitung der nichtlinearen Kennlinie z_2 = g(V_2) für V_2 = 0 \ \rm dB bzw. z_2 = 1.
- Schließlich erhält man für z_2 = 2:
- f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {f_{z{\rm 2}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot {\rm exp } \left [ - \frac {{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= \frac {0.578}{ 2} \cdot {\rm exp } \left [ - \frac {0.48}{0.952} \right ] \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}.
(4) Berücksichtigt man den Zusammenhang zwischen z_2 und V_2, so erhält man:
- {\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5} \hspace{0.05cm},
- {\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842} \hspace{0.05cm},
- {\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S}) \hspace{0.05cm}.
- Die Wahrscheinlichkeit, dass eine Gaußvariable größer ist als 2 \cdot \sigma, ist aber gleich {\rm Q}(2):
- {\rm Pr}(z_{\rm 2} > 4) = {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023} \hspace{0.05cm}.
(5) Richtig ist der Lösungsvorschlag 3:
- Die erste Aussage ist mit Sicherheit nicht zutreffend, da sich der Mittelwert m_{\rm S} auf die logarithmierte Empfangsleistung (in \rm dBm) bezieht.
- Um zu klären, ob nun die zweite oder die dritte Lösungsalternative zutrifft, gehen wir von P_{\rm S} = 1 \ \rm W, V_1 = 60 \ \rm dB ⇒ P_{\rm E}' = 1 \ {\rm µ W} und folgender V_2–WDF aus:
- f_{V{\rm 2}}(V_{\rm 2}) = 0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB}) + 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.
- In der Hälfte der Zeit ist dann P_{\rm E} = 1 \ \rm µ W, während in den beiden anderen Vierteln jeweils gilt:
- V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\rm µ W}\hspace{0.05cm},
- V_{\rm 2}= -10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\rm µ W}\hspace{0.05cm}.
- Der Mittelwert ergibt somit:
- {\rm E}[P_{\rm E}(t)] = 0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W} \hspace{0.05cm}.
- Diese einfache Rechnung mit diskreten Wahrscheinlichkeiten anstelle einer kontinuierlichen WDF deutet darauf hin, dass der Lösungsvorschlag 3 richtig sein wird.
- The WDF–value for the abscissa value z_2 = 1 is obtained by inserting it into the given equation:
f_{z{\rm 2}}(z_{\rm 2} = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {\rm exp } \left [ - {\rm ln}^2 (z_2 = 1) /({2 \cdot C^2 \cdot \sigma_{\rm S}^2}) \right ]}{ \sqrt{2 \pi }\cdot C \cdot \sigma_{\rm S} \cdot (z_2 = 1)}=\frac {1}{ \sqrt{2 \pi } \cdot \sigma_{\rm S} } \cdot \frac {1}{C } = \frac {1}{ \sqrt{2 \pi } \cdot 6\,\,{\rm dB} } \cdot \frac {20\,\,{\rm dB}}}{ {\rm ln} \hspace{0.1cm}(10) } \hspace{0.15cm} \underline{\approx 0.578}\hspace{0.05cm}.
- The first portion is equal to the WDF–value $f_{{{\it V}2}(V_2 = 0)$.
- C considers the amount of the derivative of the non-linear characteristic z_2 = g(V_2) for V_2 = 0 \ \rm dB or z_2 = 1.
- Finally, for z_2 = 2:
$$f_{z{\rm 2}}(z_{\rm 2} = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {f_{z{\rm 2}}}(z_{\rm 2} = 1)}{ z_{\rm 2} = 2} \cdot {\rm exp } \left [ - \frac {{{\rm ln}^2 (2)}{2 \cdot C^2 \cdot \sigma_{\rm S}^2} \right ]= \frac {0.578}{ 2} \cdot {\rm exp } \left [ - \frac {0.48}{0.952} \right ] \hspace{0.15cm} \underline{\approx 0.174}\hspace{0.05cm}. $$
(4) If you take into account the relationship between z_2 and V_2, you get
{\rm Pr}(z_{\rm 2} > 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 0\,\,{\rm dB})\hspace{0.15cm} \underline{= 0.5}
\hspace{0.05cm},
{\rm Pr}(z_{\rm 2} > 0.5) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < 6\,\,{\rm dB}) = 1- {\rm Pr}(V_{\rm 2} > 6\,\,{\rm dB})= 1- {\rm Pr}(V_{\rm 2} > \sigma_{\rm S})= 1- {\rm Q}(1)\hspace{0.15cm} \underline{= 0.842}
\hspace{0.05cm},
{\rm Pr}(z_{\rm 2} > 4) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(V_{\rm 2} < -12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > +12\,\,{\rm dB}) = {\rm Pr}(V_{\rm 2} > 2 \sigma_{\rm S})
\hspace{0.05cm}.
- The probability that a Gaussian variable is greater than 2 \cdot \sigma, but equals {\rm Q}(2):
{\rm Pr}(z_{\rm 2} > 4) = {\rm Q}(2)\hspace{0.15cm} \underline{= 0.023} \hspace{0.05cm}.
(5) Correct is the solution 3:
- The first statement is certainly not correct, since the mean value m_{\rm S} refers to the logarithmic received power (in \rm dBm).
- To clarify whether the second or the third solution alternative is correct, we assume P_{\rm S} = 1 \ \ \rm W, V_1 = 60 \ \ \rm dB ⇒ P_{\rm E}' = 1 \ {\rm µ W} and the following V_2–WDF
f_{V{\rm 2}}(V_{\rm 2}) = 0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB}) + 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.$ *Halfway through the time, $P_{\rm E} = 1 \ \ \rm µ W$, while in the other two quarters, each is valid: V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\,}{\rm µ W}\hspace{0.05cm}, V_{\rm 2}= -10\,\,{\,}{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\,}{\rm µ W}\hspace{0.05cm}. *The mean value thus gives: {\rm E}[P_{\rm E}(t)] = 0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+ 0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W}
\hspace{0.05cm}.$$
- This simple calculation with discrete probabilities instead of a continuous WDF indicates that the solution 3 will be correct.