Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.2: GSM Data Rates

From LNTwww
Revision as of 14:10, 25 June 2020 by Oezdemir (talk | contribs)

Block diagram of GSM

In this task, the data transmission with GSM is considered. However, since this system was mainly specified for voice transmission, we usually use the duration  TR=20 ms  of a voice frame as a temporal reference in the following calculations. The input data rate is  R1=9.6 kbit/s. The number of input bits in each TR frame is  N1. All parameters labelled "???" in the graphic should be calculated in the task.

The first blocks are shown in the transmission chain shown:

  • the outer coder (block code including four tail bits) with  N2=244 Bit  per frame  (TR=20  ms)   ⇒   Rate  R2  is to be determined,
  • the convolutional coder with the code rate  1/2, and subsequent puncturing (waiver of  NP bit)    ⇒   Rate R3=22.8 kbit/s,
  • Interleaving and encryption, both rate-neutral At the output of this block the rate  R4  occurs.


The further signal processing is basically as follows:

  • Each  114  (coded, scrambled, encrypted) data bits are combined together with  34  control bits (for training sequence, tail bits, guard period) and a pause (Duration:   8.25  Bit)  to a so called  Normal \ Burst . The rate at the output is called  R5 .
  • Additionally, further bursts (Frequency Correction Burst, Synchronisation Burst, Dummy Burst, Access Bursts) are added for signalling. The rate after this block is  R6.
  • Finally the TDMA multiplexing equipment follows, so that the total gross data rate of the GSM is  Rges=R7 .


The total gross digital data rate  Rges=270,833 kbit/s  (for eight users) is assumed to be known.




Notes:

  • The task belongs to the chapter  Gemeinsamkeiten von GSM und UMTS.
  • The graphic above summarizes the present description and defines the data rates used.
  • All rates are given in "kbit/s".
  • N1,N2,N3  and  N4  denote the respective number of bits at the corresponding points of the above block diagram within a time frame of duration  TR=20 ms.
  • Nges=156.25  is the number of bits after burst formation, related to the duration  TZ  of a TDMA time slot. Of which  NInfo=114  are information bits including channel coding.


Questionnaire

1

How many bits are provided by the source in each frame?

N1 = 

  Bit

2

What is the data rate after the outer coder?

R2 = 

  kbit/s

3

How many bits would the convolutional coder deliver alone (without dotting)?

N3 = 

  Bit

4

How many bits does the dotted convolutional coder actually emit?

N3 = 

  Bit

5

What is the data rate after Interleaver and encryption?

R4 = 

  kbit/s

6

How long does a time slot last?

TZ = 

\ \ \rm µ s

7

What is the gross data rate for each individual TDMA user?

R_{6} \ = \

\ \ \rm kbit/s

8

What gross data rate would be without signaling bits?

R_{5} \ = \

\ \ \rm kbit/s


sample solution

(1)  Es gilt N_{1} = R_{1} \cdot T_{\rm R} = 9.6 {\ \rm kbit/s} \cdot 20 {\ \rm ms} \hspace{0.15cm} \underline{= 192 \ \rm Bit}.


(2)  Analog zur Teilaufgabe (1) gilt:

R_2= \frac{N_2}{T_{\rm R}} = \frac{244\,{\rm Bit}}{20\,{\rm ms}}\hspace{0.15cm} \underline { = 12.2\,{\rm kbit/s}}\hspace{0.05cm}.

Beachten Sie bitte:   Bei einer redundanzfreien Binärquelle (aber nur bei dieser) besteht kein Unterschied zwischen „\rm Bit” und „\rm bit”.


(3)  Der Faltungscoder der Rate 1/2 allein würde aus seinen N_{2} = 244 Eingangsbits genau N_{3}\hspace{0.01cm}' \hspace{0.15cm}\underline{= 488} Ausgangsbits pro Rahmen generieren.


(4)  Aus der angegebenen Datenrate R_{3} = 22.8 \ \rm kbit/s folgt dagegen N_{3} \hspace{0.15cm}\underline{= 456}.

  • Das bedeutet, dass von den N_{3}' = 488 \ \rm Bit durch die Punktierung N_{\rm P} = 32 \ \rm Bit entfernt werden.


(5)  Sowohl das Interleaving als auch die Verschlüsselung erfolgt sozusagen „datenneutral”. Damit gilt:

R_{4} = R_{3} \hspace{0.15cm}\underline{= 22.8 \ {\rm kbit/s}} \Rightarrow N_{4} = N_{3} = 456.


(6)  Für die Bitdauer gilt T_{\rm B} = 1/R_{7} = 1/(0.270833 {\ \rm Mbit/s}) \approx 3.69 \ \rm µ s.

  • In jedem Zeitschlitz der Dauer T_{\rm Z} wird ein Burst – bestehend aus 156.25 \ \rm Bit – übertragen.
  • Daraus ergibt sich T_{\rm Z} \hspace{0.15cm}\underline{= 576.9 \ \rm µ s}.


(7)  Bei GSM gibt es acht Zeitschlitze, wobei jedem Nutzer periodisch ein Zeitschlitz zugewiesen wird.

  • Damit beträgt die Bruttodatenrate für jeden Nutzer R_{6} = R_{7}/8 \hspace{0.15cm}\underline{ \approx 33.854 \ \rm kbit/s}.


(8)  Berücksichtigt man, dass beim Normal Burst der Anteil der Nutzdaten (inkl. Kanalcodierung) 114/156.25 beträgt, so wäre die Rate ohne Berücksichtigung der zugefügten Signalisierungsbits:

R_5 = \frac{n_{\rm ges} }{n_{\rm Info} } \cdot R_4 = \frac{156.25 }{114} \cdot 22.8\,{\rm kbit/s}\hspace{0.15cm} \underline { = 31.250\,{\rm kbit/s}}\hspace{0.05cm}.
  • Zum gleichen Ergebnis kommt man, wenn man berücksichtigt, dass bei GSM jeder 13. Rahmen für Common Control (Signalisierungs–Info) reserviert ist:
R_5 = \frac{12 }{13 } \cdot 33.854\,{\rm kbit/s} ={ 31.250\,{\rm kbit/s}}\hspace{0.05cm}.
  • Damit beträgt der prozentuale Anteil der Signalisierungsbits:
\alpha_{\rm SB} = \frac{33.854 - 31.250}{33.854 } { \approx 7.7\%}\hspace{0.05cm}.