Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

Exercise 1.2Z: Lognormal Fading Revisited

From LNTwww
Revision as of 11:15, 26 July 2020 by Guenter (talk | contribs)

Path loss plus lognormal fading

We assume similar conditions as in  Exercise 1. 2  but now we summarize the purely distance-dependent path loss  V0  and the mean value  mS  of the lognormal fading  (the index "S" stands for Shadowing):

V1=V0+mS.

The total path loss is then given by the equation

VP=V1+V2(t)

where  V2(t)  describes a  lognormal distribution  with mean value zero:

fVS(VS)=12πσSe(VSmS)2/(2σ2S).

The path loss model shown in the graphic is suitable for the scenario described here:

  • Multiply the transmitted signal  s(t)  first with a constant factor  k1  and further with a stochastic quantity  z2(t)  with the probability density function  (PDF)  fz2(z2).
  • Then the signal  r(t) results at the output, whose power  PE(t)  is of course also time-dependent due to the stochastic component.
  • The PDF of the lognormally distributed random variable  z2  is for  z20:
fz2(z2)=eln2(z2)/(2C2σ2S)2πCσSz2withC=ln(10)20dB.
  • For  z20  this PDF is equal to zero.




Notes:

V1=60dB,σS=6dB.
  • The probability that a mean-free Gaussian random variable  z  is greater than its standard deviation  σ, is
Pr(z>σ)=Pr(z<σ)=Q(1)0.158.
  • Also,   Pr(z>2σ)=Pr(z<2σ)=Q(2)0.023.
  • Again for clarification:   z2  is the fading coefficient in linear units, while   V2  is the fading coefficient in logarithmic units.
  • The following conversions apply:
z2=10V2/20dB,V2=20dBlgz2.


Questionnaire

1

How large should the constant  k1  be?

k1 = 

2

Which value range applies to the random variable  z2?

All values between  and +  are possible.
The random size  z2  is not negative.
The smallest possible value is  z2=0.5.
The largest possible value is  z2=2.

3

Calculate the PDF  fz2(z2)  for some abscissa values.

fz2(z2=0) = 

fz2(z2=1) = 

fz2(z2=2) = 

4

Calculate the following probabilities.

Pr(z2>1.0) = 

Pr(z2>0.5) = 

Pr(z2>4.0) = 

5

What statements are valid for the average received power  E[PE(t)]?   Note:  PE is the power after multiplication by  k1  (see diagram).

E[PE(t)]=PE
E[PE(t)]<PE.
  E[PE(t)]>PE.


Sample solution

(1)  The constant  k1  generates the time-independent path loss  V1=60 dB.  From this follows:

k1=10V1/(20dB)=0.001_.


(2)  Only the  second statement  is correct:

  • For the Gaussian random variable  V2  all values between    and  +  are (theoretically) possible.
  • The transformation  z2=10V2/20  results in only positive values for the linear random variable  z2,
    namely between  0  (if  V2  is positive and goes to infinity)  and  +  (very large negative values  of V2).


(3)  The random value  z2  can only be positive.  Therefore the PDF value  fz2(z2=0)=0_.

  • The PDF–value for the abscissa value  z2=1  is obtained by inserting it into the given equation:
fz2(z2=1) = eln2(z2=1)/(2C2σ2S)2πCσS(z2=1)=12π6dB20dBln(10)0.578_.
  • The first portion is equal to the PDF–value  fV2(V2=0).
  • C  considers the magnitude of the derivative of the non-linear characteristic  z2=g(V2)  for  V2=0 dB  or  z2=1.
  • Finally, for  z2=2:
fz2(z2=2) = fz2(z2=1)z2=2exp[ln2(2)2C2σ2S]=0.5782exp[0.480.952]0.174_.


(4)  If you take into account the relationship between  z2  and  V2, you get

Pr(z2>1) = Pr(V2<0dB)=0.5_,
Pr(z2>0.5) = Pr(V2<6dB)=1Pr(V2>6dB)=1Pr(V2>σS)=1Q(1)=0.842_,
Pr(z2>4) = Pr(V2<12dB)=Pr(V2>+12dB)=Pr(V2>2σS).
  • The probability that a Gaussian variable is greater than  2σ  equals  Q(2):
Pr(z2>4)=Q(2)=0.023_.


(5)  The statement 3 is correct:

  • The first statement is certainly not correct, since the mean value  mS  refers to the logarithmic received power  (in  dBm).
  • To clarify whether the second or the third statement is correct, we assume  PS=1 W, V1=60 dB  ⇒  P_{\rm E}' = 1 \ {\rm µ W}  and the following PDF for  V_2:
f_{V{\rm 2}}(V_{\rm 2}) = 0.5 \cdot \delta (V_{\rm 2}) + 0.25 \cdot \delta (V_{\rm 2}- 10\,\,{\rm dB}) + 0.25 \cdot \delta (V_{\rm 2}+ 10\,\,{\rm dB})\hspace{0.05cm}.
  • Half of the time,  P_{\rm E} = 1 \ \rm µ W, while each of the following has  25\% probability::
V_{\rm 2}= +10\,\,{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^7} = 0.1\,\,{\,}{\rm µ W}\hspace{0.05cm},
V_{\rm 2}= -10\,\,{\,}{\rm dB}\text{:} \hspace{0.3cm} P_{\rm E}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1\,\,{\rm W}}{10^5} = 10\,\,{\,}{\rm µ W}\hspace{0.05cm}.
  • The mean value is then:
{\rm E}[P_{\rm E}(t)] = 0.5 \cdot 1\,{\rm µ W}+ 0.25 \cdot 0.1\,{\rm µ W}+ 0.25 \cdot 10\,{\rm µ W}= 3.025\,{\rm µ W} > P_{\rm E}\hspace{0.05cm}' = 1\,{\rm µ W} \hspace{0.05cm}.
  • This simple calculation with discrete probabilities instead of a continuous PDF indicates that statement 3 is correct.