Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Discrete-Time Signal Representation

From LNTwww
< Signal Representation
Revision as of 10:52, 1 September 2020 by Javier (talk | contribs) (Text replacement - "Signal_Representation/Fouriertransformation_und_-rücktransformation" to "Signal_Representation/Fourier_Transform_and_Its_Inverse")

# ÜBERBLICK ZUM FÜNFTEN HAUPTKAPITEL #


Voraussetzung für die systemtheoretische Untersuchung von Digitalsystemen oder für deren Computersimulation ist eine geeignete zeitdiskrete Signalbeschreibung. Dieses Kapitel verdeutlicht den mathematischen Übergang von zeitkontinuierlichen auf zeitdiskrete Signale, wobei von  Fouriertransformation und Fourierrücktransformation  ausgegangen wird.

Das Kapitel beinhaltet im Einzelnen:

  • die Zeit- und Frequenzbereichsdarstellung  zeitdiskreter Signale,
  • das Abtasttheorem, das bei der Zeitdiskretisierung unbedingt zu beachten ist,
  • die Rekonstruktion des Analogsignals  aus der zeitdiskreten Repräsentation,
  • die Diskrete Fouriertransformation  (DFT) und deren Inverse (IDFT),
  • die Fehlermöglichkeiten  bei Anwendung von DFT und IDFT,
  • die Anwendung der Spektralanalyse  zur Verbesserung messtechnischer Verfahren, und
  • den für eine Rechnerimplementierung besonders geeigneten FFT-Algorithmus.


Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im

  • Kapitel 7:     Diskrete Fouriertransformation, Programm dft,
  • Kapitel 8:     Spektralanalyse, Programm stp, und
  • Kapitel 12:   Pulscodemodulation, Programm pcm


des Praktikums „Simulationsmethoden in der Nachrichtentechnik”. Diese (ehemalige) LNT-Lehrveranstaltung an der TU München basiert auf

  • dem Lehrsoftwarepaket  LNTsim   ⇒   Link verweist auf die ZIP-Version des Programms,
  • der  Praktikumsanleitung - Teil A   ⇒   Link verweist auf die PDF-Version; Kapitel 7: Seite 119-144, Kapitel 8: Seite 145-164, und
  • der  Praktikumsanleitung - Teil B   ⇒   Link verweist auf die PDF-Version; Kapitel 12: Seite 271-294.


Prinzip und Motivation


Viele Nachrichtensignale sind analog und damit gleichzeitig  zeitkontinuierlich  und  wertkontinuierlich. Soll ein solches Analogsignal mittels eines Digitalsystems übertragen werden, so sind folgende Vorverarbeitungsschritte erforderlich:

  • die  Abtastung  des Nachrichtensignals  x(t), die zweckmäßigerweise – aber nicht notwendigerweise – zu äquidistanten Zeitpunkten erfolgt   ⇒   Zeitdiskretisierung,
  • die  Quantisierung  der Abtastwerte, um so die Anzahl  M  der möglichen Werte auf einen endlichen Wert zu begrenzen   ⇒   Wertdiskretisierung.


Die Quantisierung wird erst im Kapitel  Pulscodemodulation  des Buches „Modulationsverfahren” im Detail behandelt.

Zur Zeitdiskretisierung des zeitkontinuierlichen Signals  x(t)

Im Folgenden verwenden wir für die Beschreibung der Abtastung folgende Nomenklatur:

  • Das zeitkontinuierliche Signal sei  x(t).
  • Das in äquidistanten Abständen  TA  abgetastete zeitdiskretisierte Signal sei  xA(t).
  • Außerhalb der Abtastzeitpunkte  νTA  gilt stets  xA(t)=0.
  • Die Laufvariable  ν  sei  ganzzahlig:     \nu \in \mathbb{Z} = \{\hspace{0.05cm} \text{...}\hspace{0.05cm} , –3, –2, –1, \hspace{0.2cm}0, +1, +2, +3, \text{...} \hspace{0.05cm}\} .
  • Dagegen ergibt sich zu den äquidistanten Abtastzeitpunkten mit der Konstanten  K:
x_{\rm A}(\nu \cdot T_{\rm A}) = K \cdot x(\nu \cdot T_{\rm A})\hspace{0.05cm}.

Die Konstante hängt von der Art der Zeitdiskretisierung ab. Für die obige Skizze gilt  K = 1.


Zeitbereichsdarstellung


\text{Definition:}  Im gesamten \rm LNTwww soll unter  Abtastung  die Multiplikation des zeitkontinuierlichen Signals  x(t)  mit dem  Diracpuls  p_{\delta}(t) verstanden werden:

x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.05cm}.


Anzumerken ist, dass in der Literatur auch andere Beschreibungsformen gefunden werden. Den Autoren erscheint jedoch die hier gewählte Form im Hinblick auf die Spektraldarstellung und die Herleitung der  Diskreten Fouriertransformation  (DFT) am besten geeignet.

\text{Definition:}  Der  Diracpuls (im Zeitbereich)  besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand  T_{\rm A}  und alle mit gleichem Impulsgewicht  T_{\rm A}:

p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.


Aufgrund dieser Definition ergeben sich für das abgetastete Signal folgende Eigenschaften:

  • Das abgetastete Signal zum betrachteten Zeitpunkt  (\nu \cdot T_{\rm A})  ist gleich  T_{\rm A} \cdot x(\nu \cdot T_{\rm A}) · \delta (0).
  • Da die Diracfunktion  \delta (t)  zur Zeit  t = 0  unendlich ist, sind eigentlich alle Signalwerte  x_{\rm A}(\nu \cdot T_{\rm A})  ebenfalls unendlich groß.
  • Somit ist auch der auf der letzten Seite eingeführte Faktor  K  eigentlich unendlich groß.
  • Zwei Abtastwerte  x_{\rm A}(\nu_1 \cdot T_{\rm A})  und  x_{\rm A}(\nu_2 \cdot T_{\rm A})  unterscheiden sich jedoch im gleichen Verhältnis wie die Signalwerte  x(\nu_1 \cdot T_{\rm A})  und  x(\nu_2 \cdot T_{\rm A}).
  • Die Abtastwerte von  x(t)  erscheinen in den Impulsgewichten der Diracfunktionen:
x_{\rm A}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.
  • Die zusätzliche Multiplikation mit  T_{\rm A}  ist erforderlich, damit  x(t)  und  x_{\rm A}(t)  gleiche Einheit besitzen. Beachten Sie hierbei, dass  \delta (t)  selbst die Einheit „1/s” aufweist.


Die folgenden Seiten werden zeigen, dass diese gewöhnungsbedürftigen Gleichungen durchaus zu sinnvollen Ergebnissen führen, wenn man sie konsequent anwendet.


Diracpuls im Zeit- und im Frequenzbereich


\text{Satz:}  Entwickelt man den  Diracpuls  in eine  Fourierreihe  und transformiert diese unter Anwendung des  Verschiebungssatzes  in den Frequenzbereich, so ergibt sich folgende Korrespondenz:

p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta(t- \nu \cdot T_{\rm A} )\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ).

Hierbei gibt  f_{\rm A} = 1/T_{\rm A}  den Abstand zweier benachbarter Diraclinien im Frequenzbereich an.


\text{Beweis:}  Die Herleitung der hier angegebenen Spektralfunktion  P_{\delta}(f)  geschieht in mehreren Schritten:

(1)   Da  p_{\delta}(t)  periodisch mit dem konstanten Abstand  T_{\rm A}  zwischen zwei Diraclinien ist, kann die  (komplexe) Fourierreihendarstellung  angewendet werden:

p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} D_{\mu} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} } \hspace{0.3cm}{\rm mit}\hspace{0.3cm} D_{\mu} = \frac{1}{T_{\rm A} } \cdot \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}p_{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.

(2)   Im Bereich von  –T_{\rm A}/2  bis  +T_{\rm A}/2  gilt für den Diracpuls im Zeitbereich:   p_{\delta}(t) = T_{\rm A} \cdot \delta(t). Damit kann man für die komplexen Fourierkoeffizienten schreiben:  

D_{\mu} = \int_{-T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm} \cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.1cm} {\rm d}t\hspace{0.05cm}.

(3)   Unter Berücksichtigung der Tatsache, dass für  t \neq 0  der Diracimpuls Null ist und für  t = 0  der komplexe Drehfaktor gleich  1, gilt weiter:

D_{\mu} = \int_{- T_{\rm A}/2 }^{+T_{\rm A}/2}{\delta}(t) \hspace{0.1cm} {\rm d}t = 1\hspace{0.5cm}{\Rightarrow}\hspace{0.5cm} p_{\delta}(t) = \sum_{\mu = - \infty }^{+\infty} {\rm e}^{ {\rm j} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}t/T_{\rm A} }\hspace{0.05cm}.

(4)   Der  Verschiebungssatz im Frequenzbereich  lautet mit  f_{\rm A} = 1/T_{\rm A}:

{\rm e}^{ {\rm j} \hspace{0.05cm} \hspace{0.05cm} \cdot 2 \hspace{0.05cm} \pi \hspace{0.05cm}\cdot \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm} f_{\rm A}\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.

(5)   Wendet man das Ergebnis auf jeden einzelnen Summanden an, so erhält man schließlich:

P_{\delta}(f) = \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.
q.e.d.


Das Ergebnis besagt:

  • Der Diracpuls  p_{\delta}(t)  im Zeitbereich besteht aus unendlich vielen Diracimpulsen, jeweils im gleichen Abstand  T_{\rm A}  und alle mit gleichem Impulsgewicht  T_{\rm A}.
  • Die Fouriertransformierte von  p_{\delta}(t)  ergibt wiederum einen Diracpuls, aber nun im Frequenzbereich   ⇒   P_{\delta}(f).
  • P_{\delta}(f)  besteht ebenfalls aus unendlich vielen Diracimpulsen, nun aber im jeweiligen Abstand  f_{\rm A} = 1/T_{\rm A}  und alle mit dem Impulsgewicht  1.
  • Die Abstände der Diraclinien in der Zeit– und Frequenzbereichsdarstellung folgen demnach dem  Reziprozitätsgesetz:  
T_{\rm A} \cdot f_{\rm A} = 1 \hspace{0.05cm}.


Diracpuls im Zeit- und Frequenzbereich

\text{Beispiel 1:}  Die Grafik verdeutlicht die obigen Aussagen für

  • T_{\rm A} = 50\,{\rm µs},
  • f_{\rm A} = 1/T_{\rm A} = 20\,\text{kHz} .


Man erkennt aus dieser Skizze auch die unterschiedlichen Impulsgewichte von  p_{\delta}(t)  und  P_{\delta}(f).


Frequenzbereichsdarstellung


Zum Spektrum des abgetasteten Signals  x_{\rm A}(t)  kommt man durch Anwendung des  Faltungssatzes. Dieser besagt, dass der Multiplikation im Zeitbereich die Faltung im Spektralbereich entspricht:

x_{\rm A}(t) = x(t) \cdot p_{\delta}(t)\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} X_{\rm A}(f) = X(f) \star P_{\delta}(f)\hspace{0.05cm}.

Aus dem Spektrum  X(f)  wird durch Faltung mit der um  \mu \cdot f_{\rm A}  verschobenen Diraclinie:

X(f) \star \delta (f- \mu \cdot f_{\rm A} )= X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.

Wendet man dieses Ergebnis auf alle Diraclinien des Diracpulses an, so erhält man schließlich:

X_{\rm A}(f) = X(f) \star \sum_{\mu = - \infty }^{+\infty} \delta (f- \mu \cdot f_{\rm A} ) = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm A} )\hspace{0.05cm}.

\text{Fazit:}  Die Abtastung des analogen Zeitsignals  x(t)  in äquidistanten Abständen  T_{\rm A}  führt im Spektralbereich zu einer  periodischen Fortsetzung  von  X(f)  mit dem Frequenzabstand  f_{\rm A} = 1/T_{\rm A}.


\text{Beispiel 2:}  Die obere Grafik zeigt  (schematisch!)  das Spektrum  X(f)  eines Analogsignals  x(t), das Frequenzen bis  5 \text{ kHz}  beinhaltet.

Spektrum des abgetasteten Signals

Tastet man das Signal mit der Abtastrate  f_{\rm A}\,\text{ = 20 kHz}, also im jeweiligen Abstand  T_{\rm A}\, = {\rm 50 \, µs}  ab, so erhält man das unten skizzierte periodische Spektrum  X_{\rm A}(f).

  • Da die Diracfunktionen unendlich schmal sind, beinhaltet das abgetastete Signal  x_{\rm A}(t)  auch beliebig hochfrequente Anteile.
  • Dementsprechend ist die Spektralfunktion  X_{\rm A}(f)  des abgetasteten Signals bis ins Unendliche ausgedehnt.


Signalrekonstruktion


Die Signalabtastung ist bei einem digitalen Übertragungssystem kein Selbstzweck, sondern sie muss irgendwann wieder rückgängig gemacht werden. Betrachten wir zum Beispiel das folgende System:

Signalabtastung und Signalrekonstruktion
  • Das Analogsignal  x(t)  mit der Bandbreite  B_{\rm NF}  wird wie oben beschrieben abgetastet.
  • Am Ausgang eines idealen Übertragungssystems liegt das ebenfalls zeitdiskrete Signal  y_{\rm A}(t) = x_{\rm A}(t)  vor.
  • Die Frage ist nun, wie der Block  Signalrekonstruktion  zu gestalten ist, damit auch  y(t) = x(t)  gilt.


Die Lösung ist relativ einfach, wenn man die Spektralfunktionen betrachtet:   Man erhält aus  Y_{\rm A}(f)  das Spektrum  Y(f) = X(f)  durch einen Tiefpass mit dem  Frequenzgang  H(f), der 

Frequenzbereichsdarstellung der Signalrekonstruktion
  • die tiefen Frequenzen unverfälscht durchlässt:
H(f) = 1 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \le B_{\rm NF}\hspace{0.05cm},
  • die hohen Frequenzen vollständig unterdrückt:
H(f) = 0 \hspace{0.3cm}{\rm{f\ddot{u}r}} \hspace{0.3cm} |f| \ge f_{\rm A} - B_{\rm NF}\hspace{0.05cm}.

Weiter ist aus der Grafik zu erkennen, dass der Frequenzgang  H(f)  im Bereich von  B_{\rm NF}  bis  f_{\rm A}–B_{\rm NF}  beliebig geformt sein kann,

  • beispielsweise linear abfallend (gestrichelter Verlauf)
  • oder auch rechteckförmig,


solange die beiden oben genannten Bedingungen erfüllt sind.

Das Abtasttheorem


Die vollständige Rekonstruktion des Analogsignals  y(t)  aus dem abgetasteten Signal  y_{\rm A}(t) = x_{\rm A}(t)  ist nur möglich, wenn die Abtastrate  f_{\rm A}  entsprechend der Bandbreite  B_{\rm NF}  des Nachrichtensignals richtig gewählt wurde.

Aus der Grafik der  letzten Seite  erkennt man, dass folgende Bedingung erfüllt sein muss:

f_{\rm A} - B_{\rm NF} > B_{\rm NF} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm A} > 2 \cdot B_{\rm NF}\hspace{0.05cm}.

\text{Abtasttheorem:}  Besitzt ein Analogsignal  x(t)  Spektralanteile im Bereich  \vert f \vert < B_{\rm NF}, so kann dieses aus seinem abgetasteten Signal nur dann vollständig rekonstruiert werden, wenn die Abtastrate hinreichend groß ist:

f_{\rm A} ≥ 2 \cdot B_{\rm NF}.

Für den Abstand zweier Abtastwerte muss demnach gelten:

T_{\rm A} \le \frac{1}{ 2 \cdot B_{\rm NF} }\hspace{0.05cm}.


Wird bei der Abtastung der größtmögliche Wert   ⇒   T_{\rm A} = 1/(2B_{\rm NF})  herangezogen,

  • so muss zur Signalrekonstruktion des Analogsignals aus seinen Abtastwerten
  • ein idealer, rechteckförmiger Tiefpass mit der Grenzfrequenz  f_{\rm G} = f_{\rm A}/2 = 1/(2T_{\rm A})  verwendet werden.


\text{Beispiel 3:}  Die Grafik zeigt oben das auf  \pm\text{ 5 kHz}  begrenzte Spektrum  X(f)  eines Analogsignals, unten das Spektrum  X_{\rm A}(f)  des im Abstand  T_{\rm A} =\,\text{ 100 µs}  abgetasteten Signals   ⇒   f_{\rm A}=\,\text{ 10 kHz}.

Abtasttheorem im Frequenzbereich


Zusätzlich eingezeichnet ist der Frequenzgang  H(f)  des Tiefpasses zur Signalrekonstruktion, dessen Grenzfrequenz  f_{\rm G} = f_{\rm A}/2 = 5\,\text{ kHz}  betragen muss.


  • Mit jedem anderen  f_{\rm G}–Wert ergäbe sich  Y(f) \neq X(f).
  • Bei  f_{\rm G} < 5\,\text{ kHz}  fehlen die oberen  X(f)–Anteile.
  • Bei  f_{\rm G} > 5\,\text{ kHz}  kommt es aufgrund von Faltungsprodukten zu unerwünschten Spektralanteilen in  Y(f).


Wäre die Abtastung beim Sender mit einer Abtastrate  f_{\rm A} < 10\,\text{ kHz}  erfolgt   ⇒   T_{\rm A} >100 \,{\rm µ s}, so wäre das Analogsignal  y(t) = x(t)  aus den Abtastwerten  y_{\rm A}(t)  auf keinen Fall rekonstruierbar.


Hinweis:   Zu der hier behandelten Thematik gibt es ein interaktives Applet:   Abtastung analoger Signale und Signalrekonstruktion


Aufgaben zum Kapitel


Aufgabe 5.1: Zum Abtasttheorem

Aufgabe 5.1Z: Abtastung harmonischer Schwingungen