Exercise 1.4Z: On the Doppler Effect
The Doppler effect is the change in the perceived frequency of waves of any kind as the source (transmitter) and observer (receiver) move relative to each other.
Here we always assume a static transmitter, while the receiver can move in four different directions (A), (B), (C) and (D) (see diagram).
Different speeds are to be investigated:
- an unrealistically high speed v1=0.6⋅c=1.8⋅108 m/s,
- the maximum speed v2=3 km/s (10800 km/h) during unmanned test flight,
- approximately the maximum speed v3=30 m/s=108 km/h on federal roads.
The equations given in the theory section for the reception frequency are
- taking into account the theory of relativity (briefly referred to as „relativistic”):
equation(1):fE=fS⋅√1−(v/c)21−v/c⋅cos(α),
- without consideration of relativistic properties (referred to as „conventional”):
equation(2):fE=fS⋅[1+v/c⋅cos(α)].
Notes:
- This task belongs to the topic of Statistical bindings within the Rayleigh process.
- c=3⋅108 m/s is the speed of light.
- To check your results you can use the applet The Doppler Effect.
Questions
Solutions
- f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.
- With \upsilon_1/c = 0.6 you get
- {f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2 \hspace{0.05cm}.
- Correspondingly with \upsilon_2/c = 10^{\rm –5}:
- {f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001 \hspace{0.05cm}.
(2) Now the receiver moves away from the transmitter (\alpha = 180^°).
- The receive frequency f_{\rm E} is lower than the transmit frequency f_{\rm S} and the Doppler frequency f_{\rm D} is negative. With {\rm cos}(\alpha) = \ –1 you now get
- {f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 = \left\{ \begin{array}{c} \hspace{0.15cm} \underline{ -0.5} \\ \\ \hspace{0.15cm} \underline{ -10^{-5}} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.
- Converting to f_{\rm E}/f_{\rm S} results in:
- {f_{\rm E}}/{f_{\rm S}} = \left\{ \begin{array}{c} \hspace{0.15cm} { 0.5} \\ \\ \hspace{0.15cm} { 0.99999} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.
(3) The following equations apply here:
- f_{\rm E} = f_{\rm S} \cdot \left [ 1 + {v}/{c} \cdot \cos(\alpha) \right ] \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.
This results in the following numerical values:
- Direction (A), v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,
- Direction (A), v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,
- Direction (B), v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,
- Direction (B), v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.
You can tell:
- For realistic speeds – including v \ \approx \ 10000 \ {\rm km/h} – the conventional equation (2) gives the same result as the relativistic equation (1) up to the accuracy of a pocket calculator.
- With the approximation, the angles \alpha = 0^° and \alpha = 180^\circ result in the same absolute value for the Doppler frequency.
- The approximations differ only in the sign.
- In the relativistic equation this symmetry is no longer present. See subtasks (1) and (2).
(4) Equation (2) leads here to the result: f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.
- The direction of travel (C) is perpendicular (\alpha = 90^\circ) to the connection line transmitter–receiver. In this case, no Doppler shift occurs:
- f_{\rm D} \ \ \underline {= \ 0}.
- The direction of movement (D) is characterized by \alpha = \ –135^\circ. As a result:
- f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}} \hspace{0.05cm}.