Exercise 2.3Z: Oscillation Parameters

From LNTwww
Revision as of 22:59, 13 January 2021 by Noah (talk | contribs)

Definition von  x0t1  und  t2

Every harmonic oscillation can also be written in the form

x(t)=Ccos(2πtτT0).

The oscillation is thus completely determined by three parameters:

  • the amplitude  C,
  • the period duration   T0,
  • the shift  τ  with respect to a cosine signal.


A second form of representation is with the base frequency  f0  and the phase  φ:

x(t)=Ccos(2πf0tφ).

From a harmonic oscillation it is now known that

  • the first signal maximum occurs at  t1=2ms  auftritt,
  • the second signal maximum occurs at  t2=14ms  auftritt,
  • the value  x0=x(t=0)=3V .




Hint:



Questions

1

What is the period duration  T0  and the base frequency  f0?

T0= 

 ms
f0= 

 Hz

2

What is the value of the shift  τ  and the phase  φ  (in  degrees) ?

τ= 

 ms
φ= 

 Grad

3

What is the amplitude of the harmonic oscillation??

C = 

 V

4

What is the spectrum  X(f)?  What is the weight of the spectral line at  +f0 ?

Re[X(f=f0)] = 

 V
Im[X(f=f0)] = 

 V


Musterlösung

(1)  Es gilt  T0=t2t1=12ms  und  f0=1/T083.33Hz_.


(2)  Die Verschiebung beträgt  τ=2ms_  und die Phase ist  φ=2πτ/T0=π/3  entsprechend  φ=60_.


(3)  Aus dem Wert zum Zeitpunkt  t=0  folgt für die Amplitude  C:

x0=x(t=0)=Ccos(60)=C/2=3VC=6V_.


(4)  Die dazugehörige Spektralfunktion lautet:

X(f)=C/2ejφδ(ff0)+C/2ejφδ(f+f0).
  • Das Gewicht der Diraclinie bei  f=f0  (erster Term) ist   C/2ejφ=3Vcos(60)3Vsin(60)1.5Vj2.6V_.