Exercise 5.3: Mean Square Error
We consider three pulse-like signals, namely
- a Gaussian pulse with amplitude $A$ and equivalent duration $T$:
- $$x_1(t) = A \cdot {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm},$$
- a Rectangular pulse $x_2(t)$ with amplitude $A$ and (equivalent) duration $T$:
- $$x_2(t) = \left\{ \begin{array}{c} A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |t| < T/2 \hspace{0.05cm}, \\ |t| > T/2 \hspace{0.05cm}, \\ \end{array}$$
- a so called Sinc pulse according to the following definition:
- $$x_3(t) = A \cdot {\rm si}(\pi \cdot t/ T) ,\hspace{0.15cm}{\rm si}(x) = \sin(x)/x\hspace{0.05cm}.$$
Let the signal parameters be $A = 1\ {\rm V}$ and $T = 1\ {\rm ms}$ in each case.
The conventional Fourier Transform leads to the following spectral functions:
- $X_1(f)$ is also Gaussian,
- $X_2(f)$ runs according to the $\rm si$–function,
- $X_3(f)$ is constant for $|f| < 1/(2 T)$ and outside zero.
For all spectral functions, $X(f = 0) = A \cdot T$.
If the discrete-frequency spectrum is determined by the Discrete Fourier Transform(DFT) with the DFT parameters
- $N = 512$ ⇒ number of samples considered in the time and frequency domain,*$f_{\rm A}$ ⇒ interpolation distance in the frequency domain,
this will lead to distortions due to truncation and/or aliasing errors.
The other DFT parameters are clearly fixed withn&bsp; $N$ uan $f_{\rm A}$ .The following applies to these:
- $$f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm P}/N \hspace{0.05cm}.$$
The accuracy of the respective DFT approximation is captured by thenbsp; mean square error (MSE, here MQF):
- $${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
The resulting MSE values are given in the graph above, valid for $N = 512$ as well as for
- $f_{\rm A} \cdot T = 1/4$,
- $f_{\rm A} \cdot T = 1/8$,
- $f_{\rm A} \cdot T = 1/16$.
Hints:
- This task belongs to the chapter Possible Errors when Using DFT.
- The theory for this chapter is summarised in the learning video Possible Errors when Using DFT .
Questions
Solution
- $$f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.$$
- This covers the frequency range $–f_{\rm P}/2 \leq f < f_{\rm P}/2$ :
- $$f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.$$
(2) The periodisation of the time function is based on the parameter $T_{\rm P} = 1/f_{\rm A} = 8T$.
- The distance between two samples is therefore
- $$T_{\rm A}/T = \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.$$
(3) Correct is the proposed solution 1 ⇒ increase of the termination error:
- This measure simultaneously halves $T_{\rm P}$ from $8T$ to $4T$ .*Thus, only samples in the range $–2T \leq t < 2T$, are taken into account, which increases the termination error.
- The mean square error $(\rm MQF)$ steigt dadurch beim Gaußimpuls $x_1(t)$ von $0.15 \cdot 10^{-15}$ auf $8 \cdot 10^{-15}$, obwohl der Aliasingfehler durch diese Maßnahme sogar etwas kleiner wird.
(4) Richtig ist der Lösungsvorschlag 2 ⇒ Erhöhung des Aliasingfehlers:
- Durch die Halbierung von $f_{\rm A}$ wird auch $f_{\rm P}$ halbiert.
- Dadurch wird der Aliasingfehler etwas größer bei gleichzeitig kleinerem Abbruchfehler.
- Insgesamt steigt beim Gaußimpuls $x_1(t)$ der mittlere quadratische Fehler $(\rm MQF)$ von $1.5 \cdot 10^{-16}$ auf $3.3 \cdot 10^{-16}$.
(5) Richtig sind die Lösungsvorschläge 1 und 2:
- Wie aus der Grafik zu ersehen ist, trifft die letzte Aussage nicht zu im Gegensatz zu den ersten beiden.
- Aufgrund des langsamen, $\rm si$–förmigen Abfalls der Spektralfunktion dominiert der Aliasingfehler.
- Der $\rm MQF$–Wert ist bei $f_{\rm A} \cdot T = 1/8$ mit $1.4 \cdot 10^{-5}$ deshalb deutlich größer als beim Gaußimpuls $(1.5 \cdot 10^{-16})$.
(6) Richtig ist der Lösungsvorschlag 3:
- Die Spektralfunktion $X_3(f)$ hat hier einen rechteckförmigen Vorlauf, so dass die beiden ersten Aussagen nicht zutreffen.
- Dagegen ist bei dieser $\rm si$–förmigen Zeitfunktion ein Abbruchfehler unvermeidbar. Dieser führt zu den angegebenen großen $\rm MQF$–Werten.