Exercise 2.4: Frequency and Phase Offset

From LNTwww
Revision as of 15:48, 15 November 2021 by Guenter (talk | contribs)

Modell des Synchrondemodulators

Betrachtet wird das Quellensignal  $q(t) = A_{\rm 1} \cdot \cos(2 \pi f_{\rm 1} t ) +A_{\rm 2} \cdot \sin(2 \pi f_{\rm 2} t )$  mit den Signalparametern

$$ A_1 = 2\,{\rm V}, \hspace{0.15cm}f_1 = 2\,{\rm kHz} \hspace{0.05cm},$$
$$A_2 = 1\,{\rm V}, \hspace{0.15cm}f_2 = 5\,{\rm kHz}\hspace{0.05cm}.$$

Dieses Signal wird ZSB–amplitudenmoduliert.

Das modulierte Signal  $s(t)$  besitzt somit Spektralanteile bei  $±45$ kHz,  $±48$ kHz,  $±52$ kHz  und  $±55$ kHz.  Bekannt ist weiter, dass das sendeseitige Trägersignal sinusförmig ist  $(ϕ_{\rm T} = -90^\circ)$.

Die Demodulation soll mit der skizzierter Schaltung erfolgen, die durch folgende Parameter bestimmt ist:

  • Amplitude  $A_{\rm E}$  (ohne Einheit),
  • Frequenz  $f_{\rm E}$,
  • Phase  $ϕ_{\rm E}$.


Der Block  $H_{\rm E}(f)$  beschreibt einen idealen, rechteckförmigen Tiefpass, der geeignet dimensioniert ist.





Hinweise:

  • Berücksichtigen Sie die folgenden trigonometrischen Umformungen:
$$\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\right] \hspace{0.05cm},$$
$$\sin(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \sin(\alpha-\beta) + \sin(\alpha+\beta)\right] \hspace{0.05cm},$$
$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right] \hspace{0.05cm}.$$


Fragebogen

1

Welche der nachfolgenden Aussagen sind zutreffend?

Der Demodulator würde bei ZSB–AM mit Träger besser arbeiten.
Der Träger würde die Sendeleistung unnötigerweise vergrößern.
Die richtige Dimensionierung des Tiefpasses  $H_{\rm E}(f)$  ist essentiell.
Man könnte auch einen Hüllkurvendemodulator verwenden.
Hüllkurvendemodulation ist nur für  $m \le 1$  anwendbar.

2

Wie sind die Signalparameter des empfangsseitigen Trägers  $z_{\rm E}(t)$  zu wählen, damit  $v(t) = q(t)$  gilt?

$A_{\rm E} \ = \ $

$f_{\rm E} \ \hspace{0.05cm} = \ $

$\ \text{kHz}$
$\phi_{\rm E} \ = \ $

$\ \text{Grad}$

3

Es gelte  $f_{\rm E} = f_{\rm T}$  (kein Frequenzversatz).  Welches Sinkensignal  $v(t)$  ergibt sich mit  $ϕ_{\rm E} = - 120^\circ$?
Geben Sie dessen Signalwert bei  $t = 0$  ein.

$v(t = 0)\ = \ $

$\ \text{V}$

4

Es gelte weiter  $f_{\rm E} = f_{\rm T}$.  Welches Sinkensignal  $v(t)$  ergibt sich mit  $ϕ_{\rm E} = 0^\circ$?
Geben Sie den Signalwert bei  $t = 0$  ein.

$v(t = 0)\ = \ $

$\ \text{V}$

5

Es gelte  $ϕ_{\rm E} = ϕ_{\rm T}$  (kein Phasenversatz).  Welches Sinkensignal erhält man mit  $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T} = 1\text{ kHz}$?
Welche der folgenden Aussagen sind richtig?

Es gilt  $v(t) = q(t) · \cos(2π · Δ\hspace{-0.05cm}f_{\rm T} · t).$
$v(t)$  beinhaltet einen Spektralanteil bei  $2$ kHz.
$v(t)$  beinhaltet einen Spektralanteil bei  $4$ kHz.
$v(t)$  beinhaltet einen Spektralanteil bei  $6$ kHz.


Musterlösung

(1)  Richtig sind die Aussagen 2, 3 und 5:

  • Bei ZSB–AM ohne Träger bzw. mit einem Modulationsgrad  $m > 1$  ist Hüllkurvendemodulation nicht anwendbar.
  • Die Leistungsfähigkeit des Synchrondemodulators wird durch den zusätzlichen Trägeranteil nicht gesteigert, sondern führt lediglich zu einer unnötigen Vergrößerung der aufzubringenden Sendeleistung.
  • Auch die dritte Aussage ist richtig.  In der Musterlösung zur  Aufgabe 2.4Z  wird gezeigt, welche Auswirkungen ein Verzicht bzw. eine falsche Dimensionierung von  $H_{\rm E} (f)$  hat.


(2)  Wie der Name „Synchrondemodulator” bereits impliziert, müssen die Signale  $z(t)$  und  $z_{\rm E} (t)$  frequenz– und phasensynchron sein:

$$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$
  • Die Trägerfrequenz  $f_{\rm T} $  am Sender kann aus den Angaben über das Sendespektrum  $S(f)$  ermittelt werden.  Bei vollständiger Synchronität gilt:
$$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$
  • Der zweite Term wird durch den Tiefpass entfernt.  Mit  $A_{\rm E}\hspace{0.15cm}\underline{ = 2}$  gilt somit  $v(t) = q(t)$.


(3)  Im Theorieteil wurde gezeigt, dass bei ZSB–AM und Synchrondemodulation allgemein gilt:

$$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$
  • Auch bei ungenügender Phasensynchronisation kommt es nicht zu Verzerrungen, sondern nur zu einer frequenzunabhängigen Dämpfung.
  • Mit  $ϕ_{\rm T} =-90^\circ$  und  $ϕ_{\rm T} = -120^\circ$  ist  $Δϕ_{\rm T} = -30^\circ$  und man erhält:
$$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$


(4)  Nun beträgt die Phasendifferenz  $Δϕ_{\rm T} = 90^\circ$  und man erhält  $v(t) \equiv 0$.

  • Es ist müßig darüber zu diskutieren, ob es sich hierbei noch immer um ein verzerrungsfreies System handelt.
  • Das Ergebnis  $v(t) \equiv 0$  ist darauf zurückzuführen, dass Cosinus und Sinus orthogonale Funktionen sind.
  • Dieses Prinzip wird zum Beispiel bei der so genannten  Quadratur–Amplitudenmodulation  ausgenutzt.


(5)  Hier lautet nun die Gleichung für das Signal nach der Multiplikation:

$$b(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.$$
  • Dieses Ergebnis kann mit der trigonometrischen Umformung
$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]$$
auch wie folgt geschrieben werden:
$$ b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.$$
  • Der zweite Term liegt für  $f_{\rm E} ≈ f_{\rm T}$  in der Umgebung von  $2f_{\rm T}$  und wird durch den Tiefpass entfernt.


Somit bleibt mit der Frequenzdifferenz  $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T}= 1$ kHz:

$$ v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.$$
  • Die erste Aussage ist richtig.  Diese besagt, dass nun das Nachrichtensignal  $v(t)$  nach der Demodulation gemäß einer Cosinusfunktion leiser und wieder lauter wird („Schwebung”).
  • Aus dem Cosinusanteil von  $q(t)$  mit der Frequenz  $f_1 = 2\text{ kHz}$  werden nun zwei Anteile  (jeweils halber Amplitude)  bei  $1\text{ kHz}$ und $3\text{ kHz}$.
  • Ebenso ist im Sinkensignal kein Anteil bei  $f_2 = 5\text{ kHz}$  enthalten, sondern lediglich Anteile bei  $4\text{ kHz}$  und bei  $6\text{ kHz}$:
$$1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t) = 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t) + 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$

Richtig sind somit die Aussagen 1, 3 und 4.