Exercise 3.3: Moments for Cosine-square PDF

From LNTwww
Revision as of 18:44, 27 December 2021 by Noah (talk | contribs)

Squared cosine PDF
and a similar PDF

As in  Exercise 3.1  and  Exercise 3. 2  we consider the random variable restricted to the range of values from  $-2$  to  $+2$  with the following PDF in this section:

$$f_x(x)= {1}/{2}\cdot \cos^2({\pi}/{4}\cdot { x}).$$

Next to this, we consider a second random variable  $y$ that returns only values between  $0$  and  $2$  with the following PDF:

$$f_y(y)=\sin^2({\pi}/{2}\cdot y).$$
  • Both density functions are shown in the graph.
  • Outside the ranges  $-2 < x < +2$  resp.  $0 < x < +2$ , the followings holds:   $f_x(x) = 0$  resp.  $f_y(y) = 0$.
  • Both random variables can be taken as (normalized) instantaneous values of the associated random signals  $x(t)$  or  $y(t)$  respectively.





Hints:

  • To solve this problem, you can use the following indefinite integral:
$$\int x^{2}\cdot {\cos}(ax)\,{\rm d}x=\frac{2 x}{ a^{ 2}}\cdot \cos(ax)+ \left [\frac{x^{\rm 2}}{\it a} - \frac{\rm 2}{\it a^{\rm 3}} \right ]\cdot \rm sin(\it ax \rm ) .$$


Questions

1

Which of the following statements are true for any given PDF  $f_x(x)$ ?
Used are the following quantities:   linear mean  $m_1$,  quadratic mean  $m_2$,  variance  $\sigma^2$.

$m_2 = 0$,  if   $m_1 \ne 0$.
$m_2 = 0$,  if   $m_1 = 0$.
$m_1 = 0$,  if   $m_2 = 0$.
$m_2 > \sigma^2$,  if   $m_1 \ne 0$.
$m_1 = 0$,   if   $f_x(-x) = f_x(x)$.
$f_x(-x) = f_x(x)$,   if   $m_1 = 0$.

2

How large is the DC component (linear mean) of the signal  $x(t)$?

$m_x \ = \ $

3

What is the rms value of the signal  $x(t)$?

$\sigma_x \ = \ $

4

The random variable  $y$  can be derived from  $x$ . Which assignment is valid?

$y = 1+x/2.$
$y = 2x.$
$y = x/2-1.$

5

How large is the DC component of the signal $y(t)$?

$m_y\ = $

6

What is the rms value of the signal  $y(t)$?

$\sigma_y\ = \ $


Solution

(1)  Under all circumstances, statements 3, 4, and 5 are correct:

  • The first statement is never true, as is evident from the  Steiner's theorem .
  • The second statement is only valid in the (trivial) special case  $x = 0$.


However, there are also zero-mean random variables with asymmetric PDF.

  • This means:  Statement 6 is not always true.


(2)  Because of the PDF symmetry with respect to  $x = 0$  it follows that for the linear mean  $m_x \hspace{0.15cm}\underline{= 0}$.


(3)  Der Effektivwert des Signals  $x(t)$  ist gleich der Streuung  $\sigma_x$  bzw. gleich der Wurzel aus der Varianz  $\sigma_x^2$.

  • Since the random variable  $x$  has mean  $m_x {= 0}$ , the variance is equal to the root mean square according to Steiner's theorem.
  • Dieser wird in Zusammenhang mit Signalen auch als die Leistung  $($bezogen auf  $1 \ \rm \Omega)$  bezeichnet. Somit gilt:
$$\sigma_x^{\rm 2}=\int_{-\infty}^{+\infty}x^{\rm 2}\cdot f_x(x)\hspace{0.1cm}{\rm d}x=2 \cdot \int_{\rm 0}^{\rm 2} x^2/2 \cdot \cos^2({\pi}/4\cdot\it x)\hspace{0.1cm} {\rm d}x.$$
  • With the relation  $\cos^2(\alpha) = 0.5 \cdot \big[1 + \cos(2\alpha)\big]$  it follows:
$$\sigma_x^2=\int_{\rm 0}^{\rm 2}{x^{\rm 2}}/{\rm 2} \hspace{0.1cm}{\rm d}x + \int_{\rm 0}^{\rm 2}{x^{\rm 2}}/{2}\cdot \cos({\pi}/{\rm 2}\cdot\it x) \hspace{0.1cm} {\rm d}x.$$
  • These two standard integrals can be found in tables. One obtains with  $a = \pi/2$:
$$\sigma_x^{\rm 2}=\left[\frac{x^{\rm 3}}{\rm 6} + \frac{x}{a^2}\cdot {\cos}(a x) + \left( \frac{x^{\rm2}}{{\rm2}a} - \frac{1}{a^3} \right) \cdot \sin(a \cdot x)\right]_{x=0}^{x=2} \hspace{0.5cm} \rightarrow \hspace{0.5cm} \sigma_{x}^{\rm 2}=\frac{\rm 4}{\rm 3}-\frac{\rm 8}{\rm \pi^2}\approx 0.524\hspace{0.5cm} \Rightarrow \hspace{0.5cm}\sigma_x \hspace{0.15cm}\underline{\approx 0.722}.$$


(4)  Correct is the first mentioned suggestion:

  • The variant  $y = 2x$  would yield a random size distributed between  $-4$  and  $+4$  .
  • In the last proposition  $y = x/2-1$  the mean  $m_y = -1$ would wäre.


(5)  From the graph on the specification sheet it is already obvious that  $m_y \hspace{0.15cm}\underline{=+1}$  must hold.


(6)  The mean value does not change the variance and dispersion.

  • By compressing by the factor  $2$  the scatter becomes smaller againstüber Teilaufgabe  (3)  also by this factor:
$$\sigma_y=\sigma_x/\rm 2\hspace{0.15cm}\underline{\approx 0.361}.$$