Exercise 3.4: Systematic Convolution Codes

From LNTwww
Revision as of 16:29, 27 October 2022 by Guenter (talk | contribs)

Predefined filter structures

One speaks of a systematic convolutional code of rate  $R = 1/2$   ⇒   $k = 1, \ n = 2$, if the code bit  $x_i^{(1)}$  is equal to the currently applied information bit  $u_i$ .

The transfer function matrix of such a code is:

$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm}.$$

The encoder  $\rm A$  shown in the upper graph is certainly not systematic, since for this  $G^{(1)}(D) ≠ 1$  holds. To derive the matrix  $\mathbf{G}(D)$  we refer to a  "earlier example", where for our standard rate 1/2 encoder with memory  $m = 2$  the transfer function matrix was determined:

$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) = \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 + D^2 \hspace{0.05cm}\big ) \hspace{0.05cm}.$$

The encoder  $\rm A$  differs from this example only by swapping the two outputs.

  • If the transfer function matrix of a code is
$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm},$$

then the equivalent systematic representation of this rate 1/2 convolutional code holds in general:

$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big ) \hspace{0.05cm}.$$


In subtask (3), check which of the systematic arrangements is equivalent to encoder  $\rm A$ ?

  • Either encoder  $\rm B$,
  • or encoder  $\rm C$ 
  • or both.





Hints:

"Transfer Function Matrix"  and 
"Equivalent systematic convolutional code".


Questions

1

What is the transfer function matrix of  $\rm A$?

$\mathbf{G}(D) = (1 + D^2, \ 1 + D + D^2)$,
$\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$,
$\mathbf{G}(D) = (1, \ 1 + D + D^2)$.

2

What is the equivalent systematic transfer function matrix?

$\mathbf{G}_{\rm sys}(D) = (1 + D + D^2, \ 1 + D^2)$,
$\mathbf{G}_{\rm sys}(D) = (1, \ 1 + D + D^2)$,
$\mathbf{G}_{\rm sys}(D) = (1, \ (1 + D + D^2)/(1 + D^2))$.

3

Which encoder is equivalent to  $\rm A$  and systematic?

Encoder  $\rm B$ ,
encoder  $\rm C$ .


Solution

(1)  Correct is the proposed solution 1:

  • Proposition 2 would result if the two outputs were swapped, that is, for the "Rate 1/2 standard code" mostly considered in the theory section.
  • Proposition 3 applies to a systematic code ⇒ $\underline{x}^{(1)} = $\underline{u}$. However, the coder considered here  $\rm A$  does not exhibit this property. '''(2)'''  To go from a nonsystematic $(n, \ k)$ code with matrix $\mathbf{G}(D)$ to the equivalent systematic code   ⇒   matrix $\mathbf{G}_{\rm sys}(D)$, <br> one must generally split $\mathbf{G}(D)$ into a $k × k$ matrix $\mathbf{T}(D)$ and a remainder matrix $\mathbf{Q}(D)$. *The desired result is then with the $k × k$ identity matrix $\mathbf{I}_k$: :'"`UNIQ-MathJax16-QINU`"' *We assume here the $\mathbf{G}(D)$ matrix for the coder  $\rm A$ . *Because $k = 1$ here both $\mathbf{T}(D)$ and $\mathbf{Q}(D)$ have dimension $1 × 1$, so strictly speaking they are not matrices at all: :'"`UNIQ-MathJax17-QINU`"' *For the two elements of the systematic transfer function matrix, we obtain: :'"`UNIQ-MathJax18-QINU`"' :'"`UNIQ-MathJax19-QINU`"' So the <u>last proposed solution</u> is correct: *Proposed solution 1 does not describe a systematic code. *A code according to solution suggestion 2 is systematic, but not equivalent to the coder  $\rm A$  according to the given circuit and transfer function matrix $\mathbf{G}(D)$. '''(3)'''  The generator function matrix of encoder  $\rm B$  is: :'"`UNIQ-MathJax20-QINU`"' *So this encoder is not equivalent to the encoder  $\rm A$. *Let us now consider the encoder  $\rm C$. Here the second matrix element of $\mathbf{G}(D)$ holds:
$$w_i \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_i + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {U}(D) = W(D) \cdot (1 + D^2 ) \hspace{0.05cm},\hspace{0.8cm} x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} w_i + w_{i-1} + w_{i-2} \hspace{0.25cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.25cm} {X}^{(2)}(D) = W(D) \cdot (1 +D + D^2 )$$
$$\Rightarrow \hspace{0.3cm} G^{(2)}(D) = \frac{{X}^{(2)}(D)}{{U}(D)} = \frac{1+D+D^2}{1+D^2}\hspace{0.05cm}.$$

This corresponds exactly to the result of the subtask (2)'  ⇒  Proposed solution 2.