Exercise 4.12: Regular and Irregular Tanner Graph

From LNTwww
Revision as of 21:21, 10 December 2022 by Noah (talk | contribs)

Given Tanner graph for code  $\rm A$

Dargestellt ist ein Tanner–Graph eines Codes  $\rm A$  mit

  • the  variable nodes  (abbreviated VNs)  $V_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ V_6$, where  $V_i$  denotes the  $i$th code word bit (whether information– or parity bit) and corresponds to the  $i$th column of the parity-check matrix;
  • the  check nodes  (abbreviated CNs)  $C_1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ C_3$, which represent the rows of the  $\mathbf{H}_{\rm A}$ matrix and hence the parity-check equations.


An edge between  $V_i$  and  $C_j$  indicates that the  $i$th code word symbol is involved in the  $j$th parity-check equation. In this case, the element  $h_{j,\hspace{0.05cm}i}$  of the parity-check matrix is equal  $1$.


In the exercise, the relation between the above Tanner–graph  $($valid for the code  $\rm A)$  and the matrix  $\mathbf{H}_{\rm A}$  shall be given. In addition, the Tanner–graph to a parity-check matrix  $\mathbf{H}_{\rm B}$  shall be set up, resulting from  $\mathbf{H}_{\rm A}$  adding another row. This is to be determined so that the associated code  $\rm B$  is regular. This means:

  • From all  variable nodes  $V_i$  $($with  $1 ≤ i ≤ n)$  go off equal numbers of edges, likewise from all  check nodes  $C_j$  $($with  $1 ≤ j ≤ m)$.
  • The Hamming weights of all rows of  $\mathbf{H}_{\rm B}$  are each said to be equal  $(w_{\rm Z})$, as are the Hamming–weights of all columns  $(w_{\rm S})$.
  • For the rate of the regular code to be constructed $\rm B$  the following lower bound then applies:
$$R \ge 1 - \frac{w_{\rm S}}{w_{\rm Z}} \hspace{0.05cm}.$$





Hints:



Questions

1

How many rows  $(m)$  and columns  $(n)$  does the parity-check matrix  $\mathbf{H}_{\rm A}$ have?

$m \hspace{0.18cm} = \ $

$n \hspace{0.3cm} = \ $

2

Which statements are true based on the Tanner graph?

The row 1 of  $\mathbf{H}_{\rm A}$–matrix is  "$1 \ 1 \ 0 \ 1 \ 0 \ 0$".
The row 2 of  $\mathbf{H}_{\rm A}$–matrix is  "$1 \ 0 \ 1 \ 0 \ 0 \ 1$".
The row 3 of  $\mathbf{H}_{\rm A}$–matrix is  "$0 \ 1 \ 1 \ 0 \ 0 \ 1$".

3

What are the properties of the code  $\rm A$ ?

The code is systematic.
The code is regular.
The code rate is  $R = 1/2$.
The code rate is  $R = 1/3$.

4

The matrix  $\mathbf{H}_{\rm B}$  is obtained from  $\mathbf{H}_{\rm A}$  by adding one more row. By which fourth row does a regular code  $\rm B$ result?

By adding "$0 \ 0 \ 0 \ 1 \ 1 \ 1$".
By adding "$1 \ 1 \ 1 \ 1 \ 1 \ 1$".
By adding any other row.

5

What are the properties of the code  $\rm B$ ?

The code is systematic.
The code is regular.
The code rate is  $R = 1/2$.
The code rate is  $R = 1/3$.


Solutiojn

(1)  The number of $\mathbf{H}_{\rm A}$–rows is equal to the number of check nodes $C_j$ in the Tanner graph  ⇒  $\underline{m = 3}$, and the number $\underline{n = 6}$ of variable nodes $V_i$ is equal to the column number.


(2)  Correct are answers 1 and 3 in contrast to statement 2:

  • The second $\mathbf{H}_{\rm A}$–row is rather "$1 \ 0 \ 1 \ 0 \ 1 \ 0$". Thus, this exercise is based on the following parity-check equation:
Underlying parity-check equations
$${ \boldsymbol{\rm H}}_{\rm A} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$
  • In the diagram, the parity-check equations are illustrated as red (row 1), green (row 2), and blue (row 3) groupings, respectively.


(3)  Correct are solutions 1 and 3:

  • The $\mathbf{H}$ matrix ends with a $3 × 3$ diagonal matrix   ⇒   systematic code.
  • Thus, the Hamming weights of the last three columns are $w_{\rm S}(4) = w_{\rm S}(5) = w_{\rm S}(6) = 1$.
  • For the first three columns, $w_{\rm S}(1) = w_{\rm S}(2) = w_{\rm S}(3) = 2$   ⇒   irregular code.
  • The three matrix rows are linearly independent. Thus $k = n - m = 6 - 3 = 3$ and $R = k/n = 1/2$ holds.


Modified Tanner graph for code $\rm B$

(4)  Correct is the proposed solution 1:

  • Looking at the previous Tanner–s graph, one can see the correctness of proposed solution 1.
  • By adding the row "$0 \ 0 \ 0 \ 1 \ 1 \ 1$" to the $\mathbf{H}_{\rm A}$ matrix, one obtains:
$${ \boldsymbol{\rm H}}_{\rm B} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1\\ 0 &0 &0 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$

The modifications are marked in red in the adjacent graphic.

Due to the newly added check node $C_4$ and the connections with $V_4, \ V_5$ and $V_6$, there are now

  • from all variable nodes $V_i$ two lines, and
  • from all Check Nodes $C_j$ uniformly four.


This is the condition for the code $\rm B$ to be regular.


(5)  Correct are the solutions 2 and 3:

  • The construction in subtask (4) yields a regular code.
  • The Hamming weights of the rows and columns, respectively, are $w_{\rm Z} = 3$ and $w_{\rm S} = 2$.
  • This gives as lower bound for the code rate:
$$R \ge 1 - \frac{w_{\rm S}}{w_{\rm Z}} = 1 - {2}/{3} = 1/3 \hspace{0.05cm}.$$
  • The $\mathbf{H}$ manipulation does not change the generator matrix $\mathbf{G}$.
  • The same code is still sent with code rate $R = 1/2$.