Kanalmodell und Rice–WDF
Die Rayleigh–Verteilung beschreibt den Mobilfunkkanal unter der Annahme, dass kein direkter Pfad vorhanden ist und sich somit der multiplikative Faktor z(t) allein aus diffus gestreuten Komponenten zusammensetzt. Bei Vorhandensein einer Direktkomponente (englisch: Line of Sight, LoS) muss man im Modell zu den mittelwertfreien Gaußprozessen x(t) und y(t) noch Gleichkomponenten hinzufügen:
\[x(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} x(t) +x_0 \hspace{0.05cm}, \hspace{0.2cm} y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} y(t) +y_0\hspace{0.05cm},\]
\[z(t) = x(t) + {\rm j} \cdot y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} z(t) +z_0 \hspace{0.05cm},\hspace{0.2cm} z_0 = x_0 + {\rm j} \cdot y_0\hspace{0.05cm}.\]
Die Grafik zeigt das Rice–Fading–Kanalmodell. Als Sonderfall ergibt sich daraus wieder das Rayleigh–Modell, wenn man x0 = y0 = 0 setzt.
Das Rice–Fading–Modell lässt sich wie folgt zusammenfassen:
- Der Realteil x(t) ist gaußverteilt (Mittelwert x0, und Varianz σ2). Der Imaginärteil y(t) ist ebenfalls gaußverteilt (Mittelwert y0, Varianz σ2) sowie unabhängig von x(t).
- Für z0 ≠ 0 ist der Betrag |z(t)| riceverteilt, woraus die Bezeichnung „Rice–Fading” herrührt. Zur Vereinfachung der Schreibweise setzen wir |z(t)| = a(t). Für a ≤ 0 ist die Betrags–WDF fa(a) identisch 0, für a ≥ 0 gilt folgende Gleichung für die Rice–WDF:
- \[f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}.\]
- Hierbei bezeichnet I0 die modifizierte Bessel–Funktion nullter Ordnung.
- \[{\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u) = \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)} \hspace{0.05cm}.\]
- Der Mobilfunkkanal ist um so besser für die Digitalsignalübertragung geeignet, je größer die „Direktpfadleistung” (|z0|2) gegenüber den Leistungen der Streukomponenten (2σ2) ist.
- Ist |z0| >> σ (Faktor 3 oder mehr), so kann die Rice–WDF mit guter Näherung durch eine Gaußverteilung mit dem Mittelwert |z0| und der Streuung σ angenähert werden.
- Im Gegensatz zu Rayleigh (mit z0 = 0) ist die Phase bei Rice–Fading nicht gleichverteilt, sondern es gibt eine Vorzugsrichtung ϕ0 = arctan(y0/x0). Oft setzt man <nobr>y0 = 0</nobr> ⇒ ϕ0 = 0.