Contents
Allgemeine Definition von statistischer Abhängigkeit
Bisher haben wir die statistische Abhängigkeit zwischen Ereignissen nicht besonders beachtet, auch wenn wir sie wie im Fall zweier disjunkter Mengen bereits verwendet haben: Gehört ein Element zu $A$, so kann es mit Sicherheit nicht auch in der disjunkten Menge $B$ enthalten sein.
Die stärkste Form von Abhängigkeit überhaupt ist eine solche deterministische Abhängigkeit zwischen zwei Mengen bzw. zwei Ereignissen. Weniger ausgeprägt ist die statistische Abhängigkeit. Beginnen wir mit deren Komplement:
Zwei Ereignisse $A$ und $B$ bezeichnet man dann als statistisch unabhängig (englisch: statistical independent) , wenn die Wahrscheinlichkeit der Schnittmenge $A ∩ B$ gleich dem Produkt der Einzelwahrscheinlichkeiten ist: $${\rm Pr}(A \cap B) = {\rm Pr}(A)\cdot {\rm Pr}(B).$$
In manchen Anwendungsfällen ist die statistische Unabhängigkeit offensichtlich, zum Beispiel beim Experiment „Münzwurf”. Die Wahrscheinlichkeit für „Zahl” oder „Bild” ist unabhängig davon, ob beim letzten Wurf Zahl oder Bild aufgetreten ist.
Und auch die einzelnen Ergebnisse beim Zufallsexperiment „Werfen einer Roulettekugel” sind bei fairen Bedingungen stets statistisch unabhängig voneinander, auch wenn einzelne Systemspieler dies nicht wahrhaben wollen.
Bei anderen Anwendungen ist dagegen die Frage, ob zwei Ereignisse statistisch unabhängig sind oder nicht, gefühlsmäßig nicht oder nur sehr schwer zu beantworten. Hier kann man nur durch Überprüfung des oben angegebenen formalen Unabhängigkeitskriteriums zur richtigen Antwort gelangen, wie das folgende Beispiel zeigen soll.
Wir betrachten wieder das Zufallsexperiment „Werfen mit zwei Würfeln”, wobei die beiden Würfel an ihren Farben Rot $(R)$ und Blau $(B)$ unterschieden werden können. Die Grafik soll diesen Sachverhalt verdeutlichen, wobei in dem zweidimensionalen Feld $(R, B)$ die Summe $S = R + B$ eingetragen ist.
Für die folgende Beschreibung definieren wir folgende Ereignisse:
- $A_1$: Die Augenzahl des roten Würfels ist $R < 4$ (rote Hinterlegung) ⇒ ${\rm Pr}(A_1) = 1/2$,
- $A_2$: Die Augenzahl des blauen Würfels ist $B > 4$ (blaue Schrift) ⇒ ${\rm Pr}(A_2) = 1/3$,
- $A_3$: Die Summe der beiden Würfel ist $S = 7$ (grüne Umrahmung) ⇒ ${\rm Pr}(A_3) = 1/6$,
- $A_4$: Die Summe der beiden Würfel ist $S = 8$ ⇒ ${\rm Pr}(A_4) = 5/36$,
- $A_5$: Die Summe der beiden Würfel ist $S = 10$ ⇒ ${\rm Pr}(A_5) = 3/36$,
Die Grafik kann wie folgt interpretiert werden:
- Die beiden Ereignisse $A_1$ und $A_2$ sind sind statistisch unabhängig, da die Wahrscheinlichkeit ${\rm Pr}(A_1 ∩ A_2) = 1/6$ der Schnittmenge gleich dem Produkt der beiden Einzelwahrscheinlichkeiten ${\rm Pr}(A_1) = 1/2$ und ${\rm Pr}(A_2) = 1/3$ ist. Aufgrund der Aufgabenstellung hätte auch jedes andere Ergebnis sehr überrascht.
- Aber auch die beiden Ereignisse $A_1$ und $A_3$ sind wegen ${\rm Pr}(A_1) = 1/2$, ${\rm Pr}(A_3) = 1/6$ und ${\rm Pr}(A_1 ∩ A_3) = 1/12$ statistisch voneinander unabhängig. Die Wahrscheinlichkeit der Schnittmenge $1/12$ ergibt sich, weil drei der 36 Felder sowohl rot hinterlegt als auch grün umrandet sind.
- Dagegen bestehen zwischen den Ereignissen $A_1$ und $A_4$ statistische Bindungen. Dies zeigt sich, da die Wahrscheinlichkeit der Schnittmenge ⇒ ${\rm Pr}(A_1 ∩ A_4) = 1/18 = 4/72$ ungleich dem Produkt ${\rm Pr}(A_1) \cdot {\rm Pr}(A_4)= 1/2 \cdot 5/36 = 5/72$ ist.
- Die beiden Ereignisse $A_1$ und $A_5$ sind sogar disjunkt ⇒ ${\rm Pr}(A_1 ∩ A_5) = 0$: Keines der rot hinterlegten Felder ist mit $S=10$ beschriftet. Dieses Beispiel zeigt, dass Disjunktivität eine besonders ausgeprägte Form von statistischer Abhängigkeit ist.
Bedingte Wahrscheinlichkeit
Bestehen zwischen den beiden Ereignissen $A$ und $B$ statistische Bindungen, so ist durch die (unbedingten) Wahrscheinlichkeiten ${\rm Pr}(A)$ und ${\rm Pr}(B)$ der Sachverhalt im statistischen Sinne nicht eindeutig beschrieben. Man benötigt dann noch so genannte bedingte Wahrscheinlichkeiten.
Die bedingte Wahrscheinlichkeit (englisch: Conditional Probability) von $A$ unter der Bedingung $B$ ist wie folgt berechenbar: $${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm} B) = \frac{{\rm Pr}(A \cap B)}{{\rm Pr}(B)}.$$
In gleicher Weise gilt für die bedingte Wahrscheinlichkeit von $B$ unter der Bedingung $A$:
$${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}A) = \frac{{\rm Pr}(A \cap B)}{{\rm Pr}(A)}.$$
Verknüpft man diese beiden Gleichungen, so ergibt sich der Satz von Bayes: $${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm} A) = \frac{{\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm} B)\cdot {\rm Pr}(\it B)}{{\rm Pr}(A)}.$$
Nachfolgend sind einige Eigenschaften von bedingten Wahrscheinlichkeiten zusammengestellt:
- Auch eine bedingte Wahrscheinlichkeit liegt stets zwischen $0$ und $1$ einschließlich dieser beiden Grenzen: $0 \le {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \le 1$.
- Kann die Bedingung $B$ als konstant angesehen werden, so gelten alle im Kapitel Mengentheoretische Grundlagen für die unbedingten Wahrscheinlichkeiten ${\rm Pr}(A)$ und ${\rm Pr}(B)$ angegebenen Rechenregeln weiterhin.
- Sind die existierenden Ereignisse $A$ und $B$ disjunkt, so ist ${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm} B) = {\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}A)= 0$.
- Ist $B$ eine echte oder unechte Teilmenge von $A$, so ist ${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) =1$.
- Sind zwei Ereignisse $A$ und $B$ statistisch voneinander unabhängig, so sind deren bedingte Wahrscheinlichkeiten gleich den unbedingten, wie die folgende Rechnung zeigt:
$${\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) = \frac{{\rm Pr}(A \cap B)}{{\rm Pr}(B)} = \frac{{\rm Pr} ( A) \cdot {\rm Pr} ( B)} { {\rm Pr}(B)} = {\rm Pr} ( A).$$
Wir betrachten wieder das Zufallsexperiment Werfen mit zwei Würfeln, wobei wie beim letzten Beispiel $S = R + B$ die Summe des roten und des blauen Würfels bezeichnet. Im nachfolgenden Schema ist das Ereignis $A_1 = „R < 4”$ wieder rötlich hinterlegt und das Ereignis $A_4 = „S = 8”$ durch grüne Umrahmungen markiert.
Zu dieser Grafik ist anzumerken:
- Die bedingte Wahrscheinlichkeit Pr( $A_1 | A_4$) = 2/5 (zwei der fünf grün umrandeten Felder sind rot hinterlegt) berechnet sich aus dem Quotienten der Verbundwahrscheinlichkeit Pr( $A_1 ∩ A_4$) = 2/36 und der Wahrscheinlichkeit Pr( $A_4$) = 5/36.
- Da $A_1$ und $A_4$ statistisch abhängig sind, ist Pr( $A_1 | A_4$) = 2/5 ungleich Pr( $A_1$) = 1/2.
- Dieses letzte Ergebnis lässt sich zum Beispiel auch über den Satz von Bayes ableiten:
$${\rm Pr}(A_4 \mid A_1) = \frac{{\rm Pr}(A_1 \mid A_4)\cdot {\rm Pr} ( A_4)} { {\rm Pr}(A_1)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {1}/{9} = \frac{2/5 \cdot 5/36}{1/2}.$$
- Dagegen gelten für $A_1$ und das hierzu statistisch unabhängige Ereignis $A_3 = „S = 7”$ die folgenden bedingten Wahrscheinlichkeiten, siehe Grafik zum letzten Beispiel:
$$\rm Pr(\it A_{\rm 1} \mid \it A_{\rm 3}) = \rm Pr(\it A_{\rm 1}) = \rm 1/2\hspace{0.5cm}bzw.\hspace{0.5cm}\rm Pr(\it A_{\rm 3} \mid \it A_{\rm 1}) = \rm Pr(\it A_{\rm 3}) = \rm 1/6.$$
Allgemeines Multiplikationstheorem
Wir betrachten weiterhin mehrere Ereignisse $A_i$ mit 1 ≤ $i$ ≤ $I$. Diese Ereignisse $A_i$ stellen nun aber kein vollständiges System mehr dar, das heißt, sie sind nicht paarweise zueinander disjunkt, und es können zwischen den einzelnen Ereignissen auch statistische Bindungen bestehen.
Für die so genannte Verbundwahrscheinlichkeit, also für die Wahrscheinlichkeit der Schnittmenge aller $I$ Ereignisse $A_i$, gilt in diesem Fall: $$\rm Pr(\it A_{\rm 1} \cap \hspace{0.1cm} ...\hspace{0.1cm} \cap A_{I}) = \hspace{0.3cm} ...$$ $$...\hspace{0.3cm}= \rm Pr(\it A_{I})\hspace{0.05cm}\cdot\hspace{0.05cm}\rm Pr(\it A_{I \rm \hspace{-0.05cm}-\hspace{-0.05cm}1} \hspace{0.05cm}| \hspace{0.05cm} A_I) \hspace{0.05cm}\cdot \hspace{0.05cm}\rm Pr(\it A_{I \rm \hspace{-0.05cm} -\hspace{-0.05cm}2} \hspace{0.05cm}| \hspace{0.05cm} \it A_{I \hspace{-0.05cm} - \hspace{-0.05cm} \rm 1}\cap \it A_I)\hspace{0.05cm} \cdot ... \cdot\hspace{0.05cm} \rm Pr(\it A_{\rm 1} \hspace{0.05cm}| \hspace{0.05cm}A_{\rm 2} \cap \hspace{0.1cm} ... \hspace{0.1cm}\cap A_{ I}).$$
In gleicher Weise gilt natürlich auch:
$$\rm Pr(\it A_{\rm 1} \cap \hspace{0.1cm} ...\hspace{0.1cm} \cap A_{I}) = \hspace{0.3cm} ...$$
$$...\hspace{0.3cm}= {\rm Pr}(A_1)\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm Pr}(A_2 \hspace{0.05cm}| \hspace{0.05cm} A_1) \hspace{0.05cm}\cdot \hspace{0.05cm}{\rm Pr}(A_3 \hspace{0.05cm}| \hspace{0.05cm} A_1\cap A_2)\hspace{0.05cm} \cdot ... \cdot\hspace{0.05cm} {\rm Pr}(A_I \hspace{0.05cm}| \hspace{0.05cm}A_1 \cap \hspace{0.1cm} ... \hspace{0.1cm}\cap A_{ I-1}).$$
Eine Lostrommel enthält zehn Lose, darunter drei Treffer (Ereignis $T$). Dann ergibt sich für die Wahrscheinlichkeit, dass man mit zwei Losen zwei Treffer zieht: $$\rm Pr(\it T_{\rm 1} \cap \it T_{\rm 2}) = \rm Pr(\it T_{\rm1})\cdot \rm Pr(\it T_{\rm 2} \hspace{0.05cm}| \hspace{0.05cm} \it T_{\rm 1}) = \rm 3/10 \cdot 2/9 = 1/15 \approx 6.7 \%.$$
Hierbei ist berücksichtigt, dass sich bei der zweiten Ziehung nur mehr neun Lose und zwei Treffer in der Urne befinden.
Würde man jedoch die Lose nach der Ziehung wieder in die Trommel zurücklegen, so wären die Ereignisse $T_1$ und $T_2$ statistisch unabhängig ⇒ $ {\rm Pr}(T_1 ∩ T_2) = (3/10)^2 = 9%.$
Rückschlusswahrscheinlichkeit
Gegeben seien Ereignisse $A_i$ mit 1 ≤ $i$ ≤ $I$, die ein vollständiges System bilden. Das heißt: Alle Ereignisse sind paarweise disjunkt $(A_i ∩ A_j = ϕ$ für alle $i ≠ j$) und die Vereinigungsmenge ergibt die Grundmenge: $$\rm \bigcup_{\it i=1}^{\it I}\it A_i = \it G.$$
Daneben betrachten wir noch das Ereignis $B$, von dem alle bedingten Wahrscheinlichkeiten Pr( $B | A_i$) mit den Indizes 1 ≤ $i$ ≤ $I$ bekannt sind.
Satz von der totalen Wahrscheinlichkeit: Unter den oben genannten Voraussetzungen gilt für die (unbedingte) Wahrscheinlichkeit des Ereignisses $B$: $$\rm Pr(\it B) = \sum_{i={\rm1}}^{I}\rm Pr(\it B \cap A_i) = \sum_{i={\rm1}}^{I}\rm Pr(\it B \mid A_i)\cdot\rm Pr(\it A_i).$$
Aus dieser Gleichung folgt mit dem Satz von Bayes für die Rückschlusswahrscheinlichkeit:
$$\rm Pr(\it A_i \mid B) = \frac{\rm Pr(\it B \mid A_i)\cdot\rm Pr(\it A_i )}{\rm Pr(\it B)} = \frac{\rm Pr(\it B \mid A_i)\cdot\rm Pr(\it A_i )}{\sum_{k={\rm1}}^{I}\rm Pr(\it B \mid A_k)\cdot\rm Pr(\it A_k)}.$$
In Münchner Studentenheimen wohnen Studierende der LMU (Ereignis $L$; 70%) und der TUM (Ereignis $T$; 30%). Es ist weiterhin bekannt, dass an der LMU 60% aller Studierenden weiblich sind, an der TUM nur 10%. Der Anteil aller Studentinnen (Ereignis $W$) kann dann mit dem Satz von der totalen Wahrscheinlichkeit ermittelt werden: $$\rm Pr(\it W) = \rm Pr(\it W \mid L)\hspace{0.01cm}\cdot\hspace{0.01cm}\rm Pr(\it L) \hspace{0.05cm}+\hspace{0.05cm} \rm Pr(\it W\mid T)\hspace{0.01cm}\cdot\hspace{0.01cm}\rm Pr(\it T) = \rm 0.6\hspace{0.01cm}\cdot\hspace{0.01cm}0.7\hspace{0.05cm}+\hspace{0.05cm}0.1\hspace{0.01cm}\cdot \hspace{0.01cm}0.3 = 45 \%.$$ Trifft man eine Studentin, so kann man mit der Rückschlusswahrscheinlichkeit $${\rm Pr}(L \hspace{-0.05cm}\mid \hspace{-0.05cm}W) = \frac{ {\rm Pr}(W \hspace{-0.05cm}\mid \hspace{-0.05cm}L)\cdot {\rm Pr}(L) }{{\rm Pr}(W \hspace{-0.05cm}\mid \hspace{-0.05cm}L) \cdot {\rm Pr}(L) +{\rm Pr}(W \hspace{-0.05cm}\mid \hspace{-0.05cm}T) \cdot {\rm Pr}(T)}=\rm \frac{0.6\cdot 0.7}{0.6\cdot 0.7 + 0.1\cdot 0.3}=\frac{14}{15}$$ vorhersagen, dass sie an der LMU studieren wird. Ein durchaus realistisches Ergebnis.
Aufgaben zum Kapitel
Aufgabe 1.2: Schaltlogik (D/B-Wandler)
Zusatzaufgabe 1.2Z: Ziffernmengen
Aufgabe 1.3: Fiktive Uni Irgenwo
Zusatzaufgabe 1.3Z: Gewinnen mit Roulette
Die Aussagen dieses Abschnitts sind im nachfolgenden Lernvideo zusammengefasst:
Statistische (Un-)Abhängigkeit