Exercise 3.1: Cosine-square PDF and PDF with Dirac Functions

From LNTwww
Revision as of 16:07, 7 March 2017 by Guenter (talk | contribs)

Cosinus-Quadrat- und Dirac-WDF

Die Grafik zeigt die Wahrscheinlichkeitsdichtefunktionen (WDF) zweier Zufallsgrößen $x$ und $y$.

  • Die WDF der Zufallsgröße $x$ lautet in analytischer Form:
$$f_x(x)=\left\{\begin{array}{*{4}{c}}A \cdot \cos^2({\pi}/{4}\cdot x) &\rm f\ddot{u}r\hspace{0.1cm} -2\le \it x\le \rm 2, \\0 & \rm sonst. \\\end{array}\right.$$
  • Dagegen besteht die WDF der Zufallsgröße $y$ aus insgesamt fünf Diracfunktionen mit den in der unteren Grafik angegebenen Gewichten.


Betrachtet man diese Zufallsgrößen als Momentanwerte zweier Zufallssignale $x(t)$ und $y(t)$, so ist offensichtlich, dass beide Signale auf den Bereich $\pm 2$ „amplitudenbegrenzt“ sind. Betragsmäßig größere Werte kommen nicht vor.

Hinweise:

$$\int \cos^{\rm 2}( ax)\, {\rm d}x=\frac{x}{2}+\frac{1}{4 a}\cdot \sin(2 ax).$$


Fragebogen

1

Welche der nachfolgenden Aussagen treffen uneingeschränkt zu?

Die Zufallsgröße $x$ ist wertkontinuierlich.
Die Zufallsgröße $y$ ist wertdiskret.
Die Zufallsgröße $y$ ist gleichzeitig zeitdiskret.
Die WDF sagt nichts aus bzgl. „zeitdiskret/zeitkontinuierlich”.

2

Berechnen Sie den Parameter $A$ der WDF $f_x(x)$.

$A \ =$

3

Wie groß ist die Wahrscheinlichkeit, dass exakt $x = 0$ ist?

${\rm Pr}(x = 0)\ =$

4

Wie groß ist die Wahrscheinlichkeit, dass $x > 0$ ist?

${\rm Pr}(x > 0)\ =$

5

Wie groß ist die Wahrscheinlichkeit, dass $y > 0$ ist?

${\rm Pr}(y > 0)\ =$

6

Wie groß ist die Wahrscheinlichkeit, dass $y$ betragsmäßig kleiner als $1$ ist?

${\rm Pr}(|y| <1)\ =$

7

Wie groß ist die Wahrscheinlichkeit, dass $x$ betragsmäßig kleiner als 1 ist?

${\rm Pr}(|x| <1)\ =$


Musterlösung

(1)  Richtig sind die Aussagen 1, 2 und 4:

  • $x$ ist wertkontinuierlich.
  • $y$ ist wertdiskret ($M = 5$).
  • Die WDF liefert keine Aussagen darüber, ob eine Zufallsgröße zeitdiskret oder zeitkontinuierlich ist.


WDF-Fläche

(2)  Die Fläche unter der WDF muss 1 ergeben. Durch einfache geometrische Überlegungen kommt man zum Ergebnis $\underline{A=0.5}$.

(3)  Die Wahrscheinlichkeit, dass die wertkontinuierliche Zufallsgröße $x$ einen festen Wert $x_0$ annimmt, ist stets vernachlässigbar klein   ⇒   $\underline{{\rm Pr}(x = 0) = 0}$.

Für die wertdiskrete Zufallsgröße $y$ gilt dagegen gemäß der Angabe: ${\rm Pr}(y = 0) = 0.4$ (Gewicht der Diracfunktion bei $y = 0$).

(4)  Wegen ${{\rm Pr}(x = 0) = 0}$ und der WDF-Symmetrie ergibt sich $\underline{{\rm Pr}(x > 0) = 0.5}$.

(5)  Da $y$ eine diskrete Zufallsgröße ist, addieren sich die Wahrscheinlichkeiten für $y = 1$ und $y = 2$:

$${\rm Pr}(y >0) = {\rm Pr}(y = 1) + {\rm Pr}( y = 2) \hspace{0.15cm}\underline {= 0.3}.$$

(6)  Das Ereignis „$| y | < 1$” ist hier identisch mit „$y = 0$”. Damit erhält man:

$${\rm Pr}(|y| < 1) = {\rm Pr}( y = 0)\hspace{0.15cm}\underline { = 0.4}.$$

(7)  Die gesuchte Wahrscheinlichkeit ist gleich dem Integral von $-1$ bis $+1$ über die WDF der kontinuierlichen Zufallsgröße $x$. Unter Berücksichtigung der Symmetrie und der angegebenen Gleichung erhält man:

$${\rm Pr}(| x|<1)=2 \cdot \int_{0}^{1}{1}/{2}\cdot \cos^2({\pi}/{4}\cdot x)\hspace{0.1cm}{\rm d}x={x}/{2}+{1}/{\pi}\cdot \sin({\pi}/{2}\cdot x)\Big |_{\rm 0}^{\rm 1}=\rm{1}/{2} + {1}/{\pi} \hspace{0.15cm}\underline{ \approx 0.818}.$$