Exercise 3.8: Once more Mutual Information
Wir betrachten das Tupel $Z = (X, Y)$, wobei die Einzelkomponenten $X$ und $Y$ jeweils ternäre Zufallsgrößen darstellen:
- $$X = \{ 0 , 1 , 2 \}$ , \hspace{0.3cm}$Y= \{ 0 , 1 , 2 \}$$.
Die gemeinsame Wahrscheinlichkeitsfunktion $P_{ XY }(X, Y)$ beider Zufallsgrößen ist in der oberen Grafik angegeben. In der Zusatzaufgabe 3.8Z wird diese Konstellation ausführlich analysiert. Man erhält als Ergebnis (alle Angaben in „bit”):
- $H(X) = H(Y) = \log_2 (3) = 1.585,$
- $H(XY) = \log_2 (9) = 3.170,$
- $I(X, Y) = 0,$
- $H(Z) = H(XZ) = 3.170,$
- $I(X, Z) = 1.585.$
Desweiteren betrachten wir hier die Zufallsgröße $W = \{ 0, 1, 2, 3, 4 \}$, deren Eigenschaften sich aus der Verbundwahrscheinlichkeitsfunktion $P_{ XW }(X, W)$ nach der unteren Skizze ergeben. Die Wahrscheinlichkeiten sind in allen weiß hinterlegten Feldern jeweils $0$.
Gesucht ist in der vorliegenden Aufgabe die Transinformation zwischen
- den Zufallsgrößen $X$ und $W$ ⇒ $I(X; W)$,
- den Zufallsgrößen $Z$ und $W ⇒ I(Z; W)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Verschiedene Entropien zweidimensionaler Zufallsgrößen.
- Insbesondere wird Bezug genommen auf die Seiten Bedingte Wahrscheinlichkeit und bedingte Entropie sowie Transinformation zwischen zwei Zufallsgrößen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Hinweis: Die Aufgabe bezieht sich auf Kapitel 3.2
Fragebogen
Musterlösung
2.Aus der 2D–Wahrscheinlichkeitsfunktion $P_{ XW }(X, W)$ auf der Angabenseite erhält man für
- die Verbundentropie:
$$H(XW) = log_2(9) = 3.170$$,
- die Wahrsacheinlichkeitsfunktion der Zufallsgröße $W$:
$$P_W(W) = [ 1/9 , 2/9 , 3/9 , 2/9 , 1/9]$$,
- die Entropie der Zufallsgröße $W$:
$$H(W) = 2 . \frac{1}{9} . log_2\frac{9}{1} + 2 . \frac{2}{9} . log_2\frac{9}{2} + 2 . \frac{3}{9} . log_2\frac{9}{3} = 2.197 ( bit)$$. Mit $H(X) = 1.585$ bit (wurde angegeben) ergibt sich somit für die Mutual Information: $$I(X;W) = H(X) + H(W) - H(XW)=$$ $$=1.585+2.197-3.170=0.612(bit)$$
Das Rechte Schaubild verdeutlicht die Berechnung der Transinformation $I(X; W)$ zwischen der ersten Komponente $X$ und der Summe $W$.
3. Die Grafik zeigt die Verbundwahrscheinlichkeit $P_{ ZW }(⋅)$. Das Schema besteht aus $5 · 9 = 45$ Feldern im Gegensatz zur Darstellung von $P_{ XW }(⋅)$ auf der Angabenseite mit $3 · 9 = 27$ Feldern.
Von den $45$ Feldern sind aber auch nur neun mit Wahrscheinlichkeiten $≠ 0$ belegt. Für die Verbundentropie gilt:
$H(ZW) = 3.170(bit)$
Mit den weiteren Entropien
$$H(Z) = 3.170 (bit)$$ $$H(W) = 2.197 (bit)$$ entsprechend der Aufgabe Z3.7 bzw. der Teilaufgabe (b) erhält man für die Transinformation:
$$I(Z;W) = H(Z) + H(W) - H(ZW) = 2.197 (bit)$$ wie auch aus dem rechten oberen Schaubild hervorgeht.
4. $Alle$ $drei$ $Aussagen$ treffen zu, wie auch aus dem oberen Schaubild ersichtlich ist. Wir versuchen eine Interpretation dieser numerischen Ergebnisse:
- Die Verbundwahrscheinlichkeit $P_{ ZW }$ setzt sich ebenso wie $P_{ XW }$ aus neun gleichwahrscheinlichen Elementen $≠ 0$ zusammen. Damit ist offensichtlich, dass auch die Verbundentropien gleich sind:
$H(ZW) = H(XW) = 3.170 (bit)$.
- Wenn ich das Tupel $Z = (X, Y)$ kenne, kenne ich natürlich auch die Summe $W = X + Y$. Damit ist $H(W|Z) = 0$. Dagegen ist $H(Z|W)$ ungleich $0$. Vielmehr gilt $H(Z|W) = H(X|W) = 0.973 bit$.
- Die Zufallsgröße $W$ liefert also die genau gleiche Information hinsichtlich des Tupels $Z$ wie für die Einzelkomponente $X$. Dies ist die verbale Interpretation für die Aussage $H(Z|W) = H(X|W)$
- Die gemeinsame Information von $Z$ und $W \Rightarrow I(Z; W)$ ist größer als die von $X und W \Rightarrow I(X; W)$, weil $H(W|Z)$ gleich $0$ ist, während $H(W|X)$ ungleich $0$ ist, nämlich genau so groß ist wie $H(X)$ :
$$I(Z;W) = H(W) - H(W|Z) = 2.197 - 0 = 2.197 (bit)$$ $$I(X;W) = H(W) - H(W|X) = 2.197 - 1.585 = 0.612 (bit)$$