Exercise 3.6: PM or FM? Or AM?
Zur Analyse eines Modulators wird an seinen Eingang das Signal $$q(t) = A_{\rm N} \cdot \cos(2 \pi \cdot f_{\rm N} \cdot t + \phi_{\rm N})$$ angelegt, wobei die Signalamplitude stets $A_N = 2 V$ beträgt. Mit der Signalfrequenz $f_N = f_1 = 5 kHz$ wird die Ortskurve $O_1$ ermittelt. Verwendet man die Nachrichtenfrequenz $f_N = f_2$, so stellt sich die Ortskurve $O_2$ ein.
Beachten Sie bei Ihrer Lösung, dass bei Winkelmodulation – dies ist der Sammelbegriff für Phasen– und Frequenzmodulation – der folgende Zusammenhang zwischen dem Modulationsindex $η$ und der Modulatorkonstanten $K_{WM}$ besteht: $$\eta = \left\{ \begin{array}{c} K_{\rm WM} \cdot A_{\rm N} \\ \frac{K_{\rm WM} \cdot A_{\rm N}}{2 \pi \cdot f_{\rm N}} \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{bei}} \\ \end{array}\begin{array}{*{20}c} {\rm PM} \hspace{0.05cm}, \\ {\rm FM}. \hspace{0.05cm} \\ \end{array}$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Frequenzmodulation.
- Bezug genommen wird aber auch auf das Kapitel Phasenmodulation.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Hinweis: Die Aufgabe bezieht sich wieder auf die Theorieteile von Kapitel 3.1 und Kapitel 3.2.
Fragebogen
Musterlösung
2.Der Modulationsindex kann aus der Grafik abgelesen werden. Es gilt $η_1 = 75°/180° · π ≈ 1.3$.
3. Bei Frequenzmodulation gilt:
$$ K_{\rm WM} = K_{\rm FM} = \frac{ 2 \pi \cdot f_{\rm N} \cdot \eta}{A_{\rm N}} = \frac{ 2 \pi \cdot 5 \cdot 10^3 \,\,{\rm Hz}\cdot 1.3}{2\,{\rm V}} \hspace{0.15cm}\underline {\approx 2.04 \cdot 10^4 \hspace{0.1cm}{\rm V^{-1}}{\rm s^{-1}}}\hspace{0.05cm}.$$
4. Der Frequenzmodulator kann als Phasenmodulator realisiert werden, wenn vorher das Quellensignal integriert wird. Dieses lautet:
$$q_{\rm I}(t) = \int q(t)\hspace{0.15cm}{\rm d}t = A_{\rm N} \cdot\int \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.15cm}{\rm d}t =$$
$$ = \frac{A_{\rm N}}{\omega_{\rm N}} \cdot \sin(\omega_{\rm N} \cdot t + \phi_{\rm N}) = \frac{A_{\rm N}}{\omega_{\rm N}} \cdot \cos(\omega_{\rm N} \cdot t + \phi_{\rm N} - 90^\circ)\hspace{0.05cm}.$$
Somit ergibt sich für das äquivalente TP-Signal mit $ϕ_N = 30°$:
$$s_{\rm TP}(t) = {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\eta \hspace{0.03cm}\cdot \hspace{0.05cm}\cos(\omega_{\rm N} \hspace{0.03cm}\cdot \hspace{0.03cm}t \hspace{0.03cm} - \hspace{0.03cm}60^\circ)}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}s_{\rm TP}(t = 0) = {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\eta \hspace{0.03cm}\cdot \hspace{0.05cm}\cos(\hspace{0.03cm}60^\circ)} = {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\eta /2}\hspace{0.05cm}.$$
Der Nullphasenwinkel ist somit gleich $η/2$ entsprechend $37.5°$.
5. Aus der Definition des Modulationsindex bei FM folgt:
$$\eta_1 = \frac{K_{\rm WM} \cdot A_{\rm N}}{2 \pi \cdot f_{\rm 1}}\hspace{0.05cm},\hspace{0.3cm} \eta_2 = \frac{K_{\rm WM} \cdot A_{\rm N}}{2 \pi \cdot f_{\rm 2}}$$
$$\Rightarrow \hspace{0.3cm}\frac{\eta_1}{\eta_2} = \frac{f_2}{f_1}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} f_2 = \frac{\eta_1}{\eta_2} \cdot f_1 = \frac{75^\circ}{125^\circ} \cdot 5\,{\rm kHz} \hspace{0.15cm}\underline {= 3\,{\rm kHz}}\hspace{0.05cm}.$$