Exercise 5.4Z: OVSF Codes

From LNTwww
Revision as of 13:07, 2 August 2017 by Guenter (talk | contribs)

Baumstruktur zur Konstruktion eines OVSF–Codes

Die Spreizcodes für UMTS sollen

  • alle zueinander orthogonal sein, um eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
  • zusätzlich eine flexible Realisierung unterschiedlicher Spreizfaktoren J ermöglichen.

Ein Beispiel hierfür sind die so genannten Codes mit variablem Spreizfaktor (englisch: Orthogonal Variable Spreading Factor, OVSF), die Spreizcodes der Längen von $J = 4$ bis $J = 512$ bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code $C$ zwei neue Codes $+C \ +C$ und $+C \ -C$.


Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel $J = 4$. Nummeriert man die Spreizfolgen von $0$ bis $J -1$ durch, so ergeben sich hier die Spreizfolgen

$$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$

Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor $J = 8$ die Spreizfolgen $\langle c_\nu^{(0)}\rangle $, ... , $\langle c_\nu^{(7)}\rangle $.

Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor $J = 4$ verwendet werden oder die drei gelb hinterlegten Codes – einmal mit $J = 2$ und zweimal mit $J = 4$.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Spreizfolgen für CDMA.
  • Bezug genommen wird insbesondere auf den Abschnitt Walsh–Funktionen im Theorieteil.
  • Wir möchten Sie gerne auch auf das Interaktionsmodul Walsh-Funktionen hinweisen.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Die Abszisse ist auf die Chipdauer $T_c$ normiert. Das bedeutet, dass $λ = 1$ eigentlich eine Verschiebung um die Verzögerungszeit $τ = T_c$ beschreibt.

Hinweis: Die Aufgabe bezieht sich auf dem Codes mit variablem Spreizfaktor (OVSF–Code) von Kapitel 5.3.

Fragebogen

1

Konstruieren Sie das Baumdiagramm für J = 8. Welche OVSF–Codes ergeben sich daraus?

〈$c_ν{(1)}$〉 = +1 +1 +1 +1 –1 –1 –1 –1,
〈$c_ν{(3)}$〉 = +1 +1 –1 –1 +1 +1 –1 –1,
〈$c_ν{(5)}$〉 = +1 –1 +1 –1 –1 +1 –1 +1,
〈$c_ν{(7)}$〉 = +1 –1 –1 +1 –1 +1 +1 –1.

2

Wieviele UMTS–Teilnehmer können mit J = 8 maximal bedient werden?

$K_{max}$ =

3

Wieviele Teilnehmer können versorgt werden, wenn drei dieser Teilnehmer einen Spreizcode mit J = 4 verwenden sollen?

$K$ =

4

Gehen Sie von einer Baumstruktur für J = 32 aus. Ist folgende Zuweisung machbar: Zweimal J = 4, einmal J = 8, zweimal J = 16 und achtmal J = 32?

ja
nein


Musterlösung

1. Die folgende Grafik zeigt die OVSF–Baumstruktur für J = 8 Nutzer. Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite.

P ID1892 Mod Z 5 4a.png

2. Wird jedem Nutzer ein Spreizcode mit J = 8 zugewiesen, so können $K_{max} = 8$ Teilnehmer versorgt werden.

3. Wenn drei Teilnehmer mit J = 4 versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit J = 8 bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) ⇒ K = 5.

4. Wir bezeichnen mit

  • $K_4 = 2$ die Anzahl der Spreizfolgen mit J = 4,
  • $K_8 = 1$ die Anzahl der Spreizfolgen mit J = 8,
  • $K_16 = 2$ die Anzahl der Spreizfolgen mit J = 16,
  • $K_32 = 8$ die Anzahl der Spreizfolgen mit J = 32,

Dann muss folgende Bedingung erfüllt sein: $$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32$$ $$\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ Wegen 2 · 8 + 1 · 4 + 2 · 2 + 8 = 32 ist die gewünschte Belegung gerade noch erlaubt ⇒ Antwort JA. Die zweimalige Bereitstellung des Spreizgrads J = 4 blockiert zum Beispiel die obere Hälfte des Baums, nach der Versorgung der einen Spreizung mit J = 8, bleiben auf der J = 8–Ebene noch 3 der 8 Äste zu belegen, usw. und so fort.